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What about …?
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What about …?

Closed-source
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What about …?

Not designed for HPC
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What about …?

Limited Scalability, Usability, and Portability
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▪ Extensibility 
— Open source 
— Modular design with support for user plugins

▪ Scalability 
— Designed from the ground up for exascale and beyond 
— Already tested at 1000s of nodes & millions of jobs

▪ Usability 
— C, Lua, and Python bindings that expose 100% of Flux’s functionality 
— Can be used as a single-user tool or a system scheduler

▪ Portability 
— Optimized for HPC and runs in Cloud and Grid settings too 
— Runs on any set of Linux machines: only requires a list of IP addresses or PMI

Why Flux?

Flux is designed to make hard scheduling problems easy
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Portability: Running Flux
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▪ Already installed on LC systems (including Sierra) 
— spack install flux-sched for everywhere else

▪ Flux can run anywhere that MPI can run, (via PMI – Process Management 
Interface) 
— Inside a resource allocation from: itself (hierarchical Flux), Slurm, Moab, PBS, LSF, etc 
— flux start  OR  srun flux start

▪ Flux can run anywhere that supports TCP and you have the IP addresses 
— flux broker -Sboot.method=config -Sboot.config_file=boot.conf 
— boot.conf:

Portability: Running Flux

session-id = "mycluster" 
tbon-endpoints = [ 
  "tcp://192.168.1.1:8020", 
  "tcp://192.168.1.2:8020", 
  "tcp://192.168.1.3:8020"]
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▪ Extensibility 
— Open source 
— Modular design with support for user plugins 

▪ Scalability 
— Designed from the ground up for exascale and beyond 
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— C, Lua, and Python bindings that expose 100% of Flux’s functionality 
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▪ Portability 
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▪ Slurm 
— sbatch –N2 –n4 –t 2:00 sleep 120

▪ Flux CLI 
— flux submit –N2 –n4 –t 2m sleep 120

Usability: Submitting a Batch Job

▪ Flux API: 
import json, flux 

jobreq = { 
    'nnodes'   : 2, 
    'ntasks'   : 4, 
    'walltime' : 120, 
    'cmdline'  : ["sleep", "120"]} 

f = flux.Flux () 
resp = f.rpc_send ("job.submit", json.dumps(jobreq))
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▪ Slurm 
— srun –N2 –n4 –t 2:00 sleep 120

▪ Flux CLI 
— flux wreckrun –N2 –n4 –t 2m sleep 120

Usability: Running an Interactive Job
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▪ Slurm 
— srun –N2 –n4 –t 2:00 sleep 120

▪ Flux CLI 
— flux wreckrun –N2 –n4 –t 2m sleep 120

Usability: Running an Interactive Job

▪ Flux API: 
import sys 
from flux import kz 

resp = f.rpc_send ("job.submit", json.dumps(jobreq)) 
kvs_dir = resp['kvs_dir'] 

for task_id in range(jobreq['ntasks']): 
    kz.attach (f, "{}.{}.stdout".format(kvs_dir, task_id), sys.stdout) 

f.reactor_run (f.get_reactor (), 0)
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Usability: Tracking Job Status

▪ CLI: slow, non-programmatic, inconvenient to parse 
— watch squeue –j JOBID 
— watch flux wreck ls JOBID

▪ Tracking via the filesystem 
— date > $JOBID.start; srun myApp; date > $JOBID.stop

▪ Push notification via Flux’s Job Status and Control (JSC): 
def jsc_cb (jcbstr, arg, errnum): 
 jcb = json.loads (jcbstr) 
    jobid = jcb['jobid'] 
    state = jsc.job_num2state (jcb[jsc.JSC_STATE_PAIR][jsc.JSC_STATE_PAIR_NSTATE]) 
    print "flux.jsc: job", jobid, "changed its state to ", state 

jsc.notify_status (f, jsc_cb, None)
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▪ Extensibility 
— Open source 
— Modular design with support for user plugins 

▪ Scalability 
— Designed from the ground up for exascale and beyond 
— Already tested at 1000s of nodes & millions of jobs 

▪ Usability 
— C, Lua, and Python bindings that expose 100% of Flux’s functionality 
— Can be used as a single-user tool or a system scheduler 

▪ Portability 
— Optimized for HPC and runs in Cloud and Grid settings too 
— Runs on any set of Linux machines: only requires a list of IP addresses or PMI

Why Flux?
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Scalability: Running Many Jobs



LLNL-PRES-757227
16

▪ Slurm 
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\; 

• Slow: requires acquiring a lock in Slurm, can timeout causing failures 
• Inefficient: uses 1 node for each task 

— find ./ -exec srun –n1 tar –cf {}.tgz {}\; 
• Slow: spawns a process for every submission 
• Inefficient: is not a true scheduler – can overlap tasks on cores
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▪ Flux API: 
for f in os.listdir(‘.’): 
 payload[‘command’] = [“tar”, “-cf”, ”{}.tgz”.format(f), f] 
 resp = f.rpc_send ("job.submit", payload)

Subject: Good Neighbor Policy  
 
You currently have 271 jobs in the batch system on lamoab. 
 
The good neighbor policy is that users keep their maximum 
submitted job count at a maximum of 200 or less. Please try 
to restrict yourself to this limit in the future. Thank you.
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▪ Slurm 
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\; 

• Slow: requires acquiring a lock in Slurm, can timeout causing failures 
• Inefficient: uses 1 node for each task 

— find ./ -exec srun –n1 tar –cf {}.tgz {}\; 
• Slow: spawns a process for every submission 
• Inefficient: is not a true scheduler – can overlap tasks on cores

▪ Flux Capacitor 
— find ./ -printf -n1 tar –cf %p.tgz %p | flux-capacitor 
— flux-capacitor --command_file my_command_file 

• -n1 tar -cf dirA.tgz ./dirA 
• -n1 tar -cf dirB.tgz ./dirB 
• -n1 tar -cf dirC.tgz ./dirC

Scalability: Running Many Jobs

▪ Flux API: 
for f in os.listdir(‘.’): 
 payload[‘command’] = [“tar”, “-cf”, ”{}.tgz”.format(f), f] 
 resp = f.rpc_send ("job.submit", payload)
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▪ Slurm 
— No support for heterogeneous job steps in versions before 17.11 
— Limited support in versions after 17.11

https://slurm.schedmd.com/
heterogeneous_jobs.html#limitations
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Scalability: Running Many Heterogeneous Jobs

▪ Slurm 
— No support for heterogeneous job steps in versions before 17.11 
— Limited support in versions after 17.11

▪ Flux Capacitor 
— flux-capacitor --command_file my_command_file 

• -n1 tar -cf dirA.tgz ./dirA 
• -n32 make –j 32 
• -N4 my_mpi_app 
• ...
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Scalability: Running Millions of Jobs
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▪ Flux Capacitor (Depth-1) 
— flux-capacitor --command_file my_command_file

Scalability: Running Millions of Jobs
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▪ Flux Capacitor (Depth-1) 
— flux-capacitor --command_file my_command_file

▪ Hierarchical Flux Capacitor (Depth-2) 
— for x in ./*.commands; do 

    flux submit -N1 flux start  \ 
         flux-capacitor --command_file $x 
done

Scalability: Running Millions of Jobs
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▪ Flux Capacitor (Depth-1) 
— flux-capacitor --command_file my_command_file

▪ Hierarchical Flux Capacitor (Depth-2) 
— for x in ./*.commands; do 

    flux submit -N1 flux start  \ 
         flux-capacitor --command_file $x 
done

▪ Flux Hierarchy (Depth-3+) 
— flux-hierarchy --config=config.json 

--command_file my_command_file

Scalability: Running Millions of Jobs
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▪ Flux Capacitor (Depth-1) 
— flux-capacitor --command_file my_command_file

▪ Hierarchical Flux Capacitor (Depth-2) 
— for x in ./*.commands; do 

    flux submit -N1 flux start  \ 
         flux-capacitor --command_file $x 
done

▪ Flux Hierarchy (Depth-3+) 
— flux-hierarchy --config=config.json 

--command_file my_command_file

Scalability: Running Millions of Jobs
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▪ Extensibility 
— Open source 
— Modular design with support for user plugins 

▪ Scalability 
— Designed from the ground up for exascale and beyond 
— Already tested at 1000s of nodes & millions of jobs 

▪ Usability 
— C, Lua, and Python bindings that expose 100% of Flux’s functionality 
— Can be used as a single-user tool or a system scheduler 

▪ Portability 
— Optimized for HPC and runs in Cloud and Grid settings too 
— Runs on any set of Linux machines: only requires a list of IP addresses or PMI

Why Flux?
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Extensibility: Modular Design
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▪ At the core of Flux is an overlay 
network 
— Built on top of ZeroMQ 
— Supports RPCs, Pub/Sub, Push/Pull, etc

Extensibility: Modular Design

Msg Idioms (RPC/Pub-Sub)
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Flux Instance
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▪ At the core of Flux is an overlay 
network 
— Built on top of ZeroMQ 
— Supports RPCs, Pub/Sub, Push/Pull, etc

▪ Modules provide extended 
functionality (i.e., services) 
— User-built modules are loadable too 
— Some modules also support plugins

▪ External tools and commands can 
access services 
— User authentication and roles supported

Extensibility: Modular Design

Msg Idioms (RPC/Pub-Sub)

Overlay Networks  & 
Routing

Comms Message Broker

Flux Instance

Sched Framework 

Remote Execution

Po
lic

y  
Pl

ug
in

 
A

Service Modules

Resource

Key-Value Store

Heartbeat

Commands

flux submit

flux-capacitor



LLNL-PRES-757227
21

Extensibility: Creating Your Own Module
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▪ Register a new service “pymod.new_job” that ingests jobs and responds with 
a Job ID

Extensibility: Creating Your Own Module
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▪ Register a new service “pymod.new_job” that ingests jobs and responds with 
a Job ID

Extensibility: Creating Your Own Module

import itertools, json, flux 

def handle_new_job(f, typemask, message, arg): 
 job_queue, job_ids = arg 
 job_queue.append(message.payload) 
 response = {‘jobid’ : job_ids.next()} 
 f.respond(message, 0, json.dumps(response)) 

def mod_main(f, *argv): 
    f.msg_watcher_create(flux.FLUX_MSGTYPE_REQUEST, 
                         handle_new_job,"pymod.new_job", 
                         args=([], itertools.count(0))).start() 
  
 f.reactor_run(f.get_reactor(), 0)
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▪ Register a new service “pymod.new_job” that ingests jobs and responds with 
a Job ID

▪ Load using flux module load pymod --module=path/to/file.py

Extensibility: Creating Your Own Module

import itertools, json, flux 

def handle_new_job(f, typemask, message, arg): 
 job_queue, job_ids = arg 
 job_queue.append(message.payload) 
 response = {‘jobid’ : job_ids.next()} 
 f.respond(message, 0, json.dumps(response)) 

def mod_main(f, *argv): 
    f.msg_watcher_create(flux.FLUX_MSGTYPE_REQUEST, 
                         handle_new_job,"pymod.new_job", 
                         args=([], itertools.count(0))).start() 
  
 f.reactor_run(f.get_reactor(), 0)
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Extensibility: Flux’s Communication Overlay
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▪ Connect to a running flux instance 
— f = flux.Flux()
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▪ Connect to a running flux instance 
— f = flux.Flux()

▪ Send an RPC to a service and receive a response 
— resp = f.rpc_send (”pymod.new_job", payload) 

jobid = json.loads(resp)[‘jobid’]

Extensibility: Flux’s Communication Overlay
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▪ Connect to a running flux instance 
— f = flux.Flux()

▪ Send an RPC to a service and receive a response 
— resp = f.rpc_send (”pymod.new_job", payload) 

jobid = json.loads(resp)[‘jobid’]

▪ Subscribe to and publish an event 
— f.event_subscribe(“node_down”) 

f.msg_watcher_create(node_down_cb, 
                     raw.FLUX_MSGTYPE_EVENT, 
                     “node_down”).start() 

— f.event_send(“node_down”)

Extensibility: Flux’s Communication Overlay
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Extensibility: Scheduler Plugins
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▪ Common, built-in scheduler plugins: 
— First-come First-Served (FCFS) 
— Backfilling 

• Conservative 
• EASY 
• Hybrid
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▪ Common, built-in scheduler plugins: 
— First-come First-Served (FCFS) 
— Backfilling 

• Conservative 
• EASY 
• Hybrid

▪ Various, advanced scheduler plugins: 
— I/O-aware 
— CPU performance variability aware 
— Network-aware

▪ Create your own!

▪ Loading the plugins 
— flux module load sched.io-aware 
— FLUX_SCHED_OPTS="plugin=sched.fcfs" flux start

Extensibility: Scheduler Plugins



LLNL-PRES-757227
24

▪ Flux-Framework code is available on GitHub 

▪ Most project discussions happen in GitHub issues 

▪ PRs and collaboration welcome!

Extensibility: Open Source
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▪ Flux-Framework code is available on GitHub 

▪ Most project discussions happen in GitHub issues 

▪ PRs and collaboration welcome!

Extensibility: Open Source

Thank You!
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