
LLNL-PRES-757227
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Flux: Practical Job Scheduling

Dong H. Ahn, Ned Bass, Al Chu, Jim Garlick, Mark Grondona,
Stephen Herbein, Tapasya Patki, Tom Scogland, Becky Springmeyer

August 15, 2018

LLNL-PRES-757227
2

What is Flux?

▪ New Resource and Job Management Software (RJMS) developed here at LLNL

▪ A way to manage remote resources and execute tasks on them

LLNL-PRES-757227
3

What is Flux?

▪ New Resource and Job Management Software (RJMS) developed here at LLNL

▪ A way to manage remote resources and execute tasks on them

LLNL-PRES-757227
3

What is Flux?

▪ New Resource and Job Management Software (RJMS) developed here at LLNL

▪ A way to manage remote resources and execute tasks on them

LLNL-PRES-757227
3

What is Flux?

▪ New Resource and Job Management Software (RJMS) developed here at LLNL

▪ A way to manage remote resources and execute tasks on them

flickr: dannychamoro

LLNL-PRES-757227
4

What is Flux?

▪ New Resource and Job Management Software (RJMS) developed here at LLNL

▪ A way to manage remote resources and execute tasks on them

LLNL-PRES-757227
4

What is Flux?

▪ New Resource and Job Management Software (RJMS) developed here at LLNL

▪ A way to manage remote resources and execute tasks on them

LLNL-PRES-757227
4

What is Flux?

▪ New Resource and Job Management Software (RJMS) developed here at LLNL

▪ A way to manage remote resources and execute tasks on them

LLNL-PRES-757227
5

What about …?

LLNL-PRES-757227
6

What about …?

Closed-source

LLNL-PRES-757227
7

What about …?

Not designed for HPC

LLNL-PRES-757227
8

What about …?

Limited Scalability, Usability, and Portability

LLNL-PRES-757227
9

Why Flux?

LLNL-PRES-757227
9

▪ Extensibility
— Open source
— Modular design with support for user plugins

Why Flux?

LLNL-PRES-757227
9

▪ Extensibility
— Open source
— Modular design with support for user plugins

▪ Scalability
— Designed from the ground up for exascale and beyond
— Already tested at 1000s of nodes & millions of jobs

Why Flux?

LLNL-PRES-757227
9

▪ Extensibility
— Open source
— Modular design with support for user plugins

▪ Scalability
— Designed from the ground up for exascale and beyond
— Already tested at 1000s of nodes & millions of jobs

▪ Usability
— C, Lua, and Python bindings that expose 100% of Flux’s functionality
— Can be used as a single-user tool or a system scheduler

Why Flux?

LLNL-PRES-757227
9

▪ Extensibility
— Open source
— Modular design with support for user plugins

▪ Scalability
— Designed from the ground up for exascale and beyond
— Already tested at 1000s of nodes & millions of jobs

▪ Usability
— C, Lua, and Python bindings that expose 100% of Flux’s functionality
— Can be used as a single-user tool or a system scheduler

▪ Portability
— Optimized for HPC and runs in Cloud and Grid settings too
— Runs on any set of Linux machines: only requires a list of IP addresses or PMI

Why Flux?

LLNL-PRES-757227
9

▪ Extensibility
— Open source
— Modular design with support for user plugins

▪ Scalability
— Designed from the ground up for exascale and beyond
— Already tested at 1000s of nodes & millions of jobs

▪ Usability
— C, Lua, and Python bindings that expose 100% of Flux’s functionality
— Can be used as a single-user tool or a system scheduler

▪ Portability
— Optimized for HPC and runs in Cloud and Grid settings too
— Runs on any set of Linux machines: only requires a list of IP addresses or PMI

Why Flux?

Flux is designed to make hard scheduling problems easy

LLNL-PRES-757227
10

Portability: Running Flux

LLNL-PRES-757227
10

▪ Already installed on LC systems (including Sierra)
— spack install flux-sched for everywhere else

Portability: Running Flux

LLNL-PRES-757227
10

▪ Already installed on LC systems (including Sierra)
— spack install flux-sched for everywhere else

▪ Flux can run anywhere that MPI can run, (via PMI – Process Management
Interface)
— Inside a resource allocation from: itself (hierarchical Flux), Slurm, Moab, PBS, LSF, etc
— flux start OR srun flux start

Portability: Running Flux

LLNL-PRES-757227
10

▪ Already installed on LC systems (including Sierra)
— spack install flux-sched for everywhere else

▪ Flux can run anywhere that MPI can run, (via PMI – Process Management
Interface)
— Inside a resource allocation from: itself (hierarchical Flux), Slurm, Moab, PBS, LSF, etc
— flux start OR srun flux start

▪ Flux can run anywhere that supports TCP and you have the IP addresses
— flux broker -Sboot.method=config -Sboot.config_file=boot.conf
— boot.conf:

Portability: Running Flux

session-id = "mycluster"
tbon-endpoints = [
 "tcp://192.168.1.1:8020",
 "tcp://192.168.1.2:8020",
 "tcp://192.168.1.3:8020"]

LLNL-PRES-757227
11

▪ Extensibility
— Open source
— Modular design with support for user plugins

▪ Scalability
— Designed from the ground up for exascale and beyond
— Already tested at 1000s of nodes & millions of jobs

▪ Usability
— C, Lua, and Python bindings that expose 100% of Flux’s functionality
— Can be used as a single-user tool or a system scheduler

▪ Portability
— Optimized for HPC and runs in Cloud and Grid settings too
— Runs on any set of Linux machines: only requires a list of IP addresses or PMI

Why Flux?

LLNL-PRES-757227
12

Usability: Submitting a Batch Job

LLNL-PRES-757227
12

▪ Slurm
— sbatch –N2 –n4 –t 2:00 sleep 120

Usability: Submitting a Batch Job

LLNL-PRES-757227
12

▪ Slurm
— sbatch –N2 –n4 –t 2:00 sleep 120

▪ Flux CLI
— flux submit –N2 –n4 –t 2m sleep 120

Usability: Submitting a Batch Job

LLNL-PRES-757227
12

▪ Slurm
— sbatch –N2 –n4 –t 2:00 sleep 120

▪ Flux CLI
— flux submit –N2 –n4 –t 2m sleep 120

Usability: Submitting a Batch Job

▪ Flux API:
import json, flux

jobreq = {
 'nnodes' : 2,
 'ntasks' : 4,
 'walltime' : 120,
 'cmdline' : ["sleep", "120"]}

f = flux.Flux ()
resp = f.rpc_send ("job.submit", json.dumps(jobreq))

LLNL-PRES-757227
13

Usability: Running an Interactive Job

LLNL-PRES-757227
13

▪ Slurm
— srun –N2 –n4 –t 2:00 sleep 120

Usability: Running an Interactive Job

LLNL-PRES-757227
13

▪ Slurm
— srun –N2 –n4 –t 2:00 sleep 120

▪ Flux CLI
— flux wreckrun –N2 –n4 –t 2m sleep 120

Usability: Running an Interactive Job

LLNL-PRES-757227
13

▪ Slurm
— srun –N2 –n4 –t 2:00 sleep 120

▪ Flux CLI
— flux wreckrun –N2 –n4 –t 2m sleep 120

Usability: Running an Interactive Job

▪ Flux API:
import sys
from flux import kz

resp = f.rpc_send ("job.submit", json.dumps(jobreq))
kvs_dir = resp['kvs_dir']

for task_id in range(jobreq['ntasks']):
 kz.attach (f, "{}.{}.stdout".format(kvs_dir, task_id), sys.stdout)

f.reactor_run (f.get_reactor (), 0)

LLNL-PRES-757227
14

Usability: Tracking Job Status

LLNL-PRES-757227
14

Usability: Tracking Job Status

▪ CLI: slow, non-programmatic, inconvenient to parse
— watch squeue –j JOBID
— watch flux wreck ls JOBID

LLNL-PRES-757227
14

Usability: Tracking Job Status

▪ CLI: slow, non-programmatic, inconvenient to parse
— watch squeue –j JOBID
— watch flux wreck ls JOBID

▪ Tracking via the filesystem
— date > $JOBID.start; srun myApp; date > $JOBID.stop

LLNL-PRES-757227
14

Usability: Tracking Job Status

▪ CLI: slow, non-programmatic, inconvenient to parse
— watch squeue –j JOBID
— watch flux wreck ls JOBID

▪ Tracking via the filesystem
— date > $JOBID.start; srun myApp; date > $JOBID.stop

→ quota -vf ~/quota.conf
Disk quotas for herbein1:
Filesystem used quota limit files
/p/lscratchrza 760.3G n/a n/a 8.6M

LLNL-PRES-757227
14

Usability: Tracking Job Status

▪ CLI: slow, non-programmatic, inconvenient to parse
— watch squeue –j JOBID
— watch flux wreck ls JOBID

▪ Tracking via the filesystem
— date > $JOBID.start; srun myApp; date > $JOBID.stop

→ quota -vf ~/quota.conf
Disk quotas for herbein1:
Filesystem used quota limit files
/p/lscratchrza 760.3G n/a n/a 8.6M

UQP Startup
Job Submission
File Creation
File Access

I/O

I/O
Non-I/O
Runtime Stages

LLNL-PRES-757227
14

Usability: Tracking Job Status

▪ CLI: slow, non-programmatic, inconvenient to parse
— watch squeue –j JOBID
— watch flux wreck ls JOBID

▪ Tracking via the filesystem
— date > $JOBID.start; srun myApp; date > $JOBID.stop

▪ Push notification via Flux’s Job Status and Control (JSC):
def jsc_cb (jcbstr, arg, errnum):
 jcb = json.loads (jcbstr)
 jobid = jcb['jobid']
 state = jsc.job_num2state (jcb[jsc.JSC_STATE_PAIR][jsc.JSC_STATE_PAIR_NSTATE])
 print "flux.jsc: job", jobid, "changed its state to ", state

jsc.notify_status (f, jsc_cb, None)

LLNL-PRES-757227
15

▪ Extensibility
— Open source
— Modular design with support for user plugins

▪ Scalability
— Designed from the ground up for exascale and beyond
— Already tested at 1000s of nodes & millions of jobs

▪ Usability
— C, Lua, and Python bindings that expose 100% of Flux’s functionality
— Can be used as a single-user tool or a system scheduler

▪ Portability
— Optimized for HPC and runs in Cloud and Grid settings too
— Runs on any set of Linux machines: only requires a list of IP addresses or PMI

Why Flux?

LLNL-PRES-757227
16

Scalability: Running Many Jobs

LLNL-PRES-757227
16

▪ Slurm
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\;

• Slow: requires acquiring a lock in Slurm, can timeout causing failures
• Inefficient: uses 1 node for each task

— find ./ -exec srun –n1 tar –cf {}.tgz {}\;
• Slow: spawns a process for every submission
• Inefficient: is not a true scheduler – can overlap tasks on cores

Scalability: Running Many Jobs

LLNL-PRES-757227
16

▪ Slurm
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\;

• Slow: requires acquiring a lock in Slurm, can timeout causing failures
• Inefficient: uses 1 node for each task

— find ./ -exec srun –n1 tar –cf {}.tgz {}\;
• Slow: spawns a process for every submission
• Inefficient: is not a true scheduler – can overlap tasks on cores

Scalability: Running Many Jobs

LLNL-PRES-757227
16

▪ Slurm
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\;

• Slow: requires acquiring a lock in Slurm, can timeout causing failures
• Inefficient: uses 1 node for each task

— find ./ -exec srun –n1 tar –cf {}.tgz {}\;
• Slow: spawns a process for every submission
• Inefficient: is not a true scheduler – can overlap tasks on cores

Scalability: Running Many Jobs

LLNL-PRES-757227
16

▪ Slurm
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\;

• Slow: requires acquiring a lock in Slurm, can timeout causing failures
• Inefficient: uses 1 node for each task

— find ./ -exec srun –n1 tar –cf {}.tgz {}\;
• Slow: spawns a process for every submission
• Inefficient: is not a true scheduler – can overlap tasks on cores

Scalability: Running Many Jobs

▪ Flux API:
for f in os.listdir(‘.’):
 payload[‘command’] = [“tar”, “-cf”, ”{}.tgz”.format(f), f]
 resp = f.rpc_send ("job.submit", payload)

LLNL-PRES-757227
16

▪ Slurm
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\;

• Slow: requires acquiring a lock in Slurm, can timeout causing failures
• Inefficient: uses 1 node for each task

— find ./ -exec srun –n1 tar –cf {}.tgz {}\;
• Slow: spawns a process for every submission
• Inefficient: is not a true scheduler – can overlap tasks on cores

Scalability: Running Many Jobs

▪ Flux API:
for f in os.listdir(‘.’):
 payload[‘command’] = [“tar”, “-cf”, ”{}.tgz”.format(f), f]
 resp = f.rpc_send ("job.submit", payload)

LLNL-PRES-757227
16

▪ Slurm
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\;

• Slow: requires acquiring a lock in Slurm, can timeout causing failures
• Inefficient: uses 1 node for each task

— find ./ -exec srun –n1 tar –cf {}.tgz {}\;
• Slow: spawns a process for every submission
• Inefficient: is not a true scheduler – can overlap tasks on cores

Scalability: Running Many Jobs

▪ Flux API:
for f in os.listdir(‘.’):
 payload[‘command’] = [“tar”, “-cf”, ”{}.tgz”.format(f), f]
 resp = f.rpc_send ("job.submit", payload)

Subject: Good Neighbor Policy  
 
You currently have 271 jobs in the batch system on lamoab. 
 
The good neighbor policy is that users keep their maximum
submitted job count at a maximum of 200 or less. Please try
to restrict yourself to this limit in the future. Thank you.

LLNL-PRES-757227
16

▪ Slurm
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\;

• Slow: requires acquiring a lock in Slurm, can timeout causing failures
• Inefficient: uses 1 node for each task

— find ./ -exec srun –n1 tar –cf {}.tgz {}\;
• Slow: spawns a process for every submission
• Inefficient: is not a true scheduler – can overlap tasks on cores

Scalability: Running Many Jobs

▪ Flux API:
for f in os.listdir(‘.’):
 payload[‘command’] = [“tar”, “-cf”, ”{}.tgz”.format(f), f]
 resp = f.rpc_send ("job.submit", payload)

Constant Output Job StreamCapacitor SchedulerVariable Input Job
Stream

LLNL-PRES-757227
16

▪ Slurm
— find ./ -exec sbatch –N1 tar –cf {}.tgz {}\;

• Slow: requires acquiring a lock in Slurm, can timeout causing failures
• Inefficient: uses 1 node for each task

— find ./ -exec srun –n1 tar –cf {}.tgz {}\;
• Slow: spawns a process for every submission
• Inefficient: is not a true scheduler – can overlap tasks on cores

▪ Flux Capacitor
— find ./ -printf -n1 tar –cf %p.tgz %p | flux-capacitor
— flux-capacitor --command_file my_command_file

• -n1 tar -cf dirA.tgz ./dirA
• -n1 tar -cf dirB.tgz ./dirB
• -n1 tar -cf dirC.tgz ./dirC

Scalability: Running Many Jobs

▪ Flux API:
for f in os.listdir(‘.’):
 payload[‘command’] = [“tar”, “-cf”, ”{}.tgz”.format(f), f]
 resp = f.rpc_send ("job.submit", payload)

LLNL-PRES-757227
17

Scalability: Running Many Heterogeneous Jobs

LLNL-PRES-757227
17

Scalability: Running Many Heterogeneous Jobs

▪ Slurm
— No support for heterogeneous job steps in versions before 17.11
— Limited support in versions after 17.11

LLNL-PRES-757227
17

Scalability: Running Many Heterogeneous Jobs

▪ Slurm
— No support for heterogeneous job steps in versions before 17.11
— Limited support in versions after 17.11

https://slurm.schedmd.com/
heterogeneous_jobs.html#limitations

LLNL-PRES-757227
17

Scalability: Running Many Heterogeneous Jobs

▪ Slurm
— No support for heterogeneous job steps in versions before 17.11
— Limited support in versions after 17.11

▪ Flux Capacitor
— flux-capacitor --command_file my_command_file

• -n1 tar -cf dirA.tgz ./dirA
• -n32 make –j 32
• -N4 my_mpi_app
• ...

LLNL-PRES-757227
18

Scalability: Running Millions of Jobs

LLNL-PRES-757227
18

▪ Flux Capacitor (Depth-1)
— flux-capacitor --command_file my_command_file

Scalability: Running Millions of Jobs

Cluster

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux InstanceCapacitor

LLNL-PRES-757227
18

▪ Flux Capacitor (Depth-1)
— flux-capacitor --command_file my_command_file

▪ Hierarchical Flux Capacitor (Depth-2)
— for x in ./*.commands; do 

 flux submit -N1 flux start \ 
 flux-capacitor --command_file $x 
done

Scalability: Running Millions of Jobs

Cluster

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance
Capacitor Capacitor Capacitor Capacitor

LLNL-PRES-757227
18

▪ Flux Capacitor (Depth-1)
— flux-capacitor --command_file my_command_file

▪ Hierarchical Flux Capacitor (Depth-2)
— for x in ./*.commands; do 

 flux submit -N1 flux start \ 
 flux-capacitor --command_file $x 
done

▪ Flux Hierarchy (Depth-3+)
— flux-hierarchy --config=config.json 

--command_file my_command_file

Scalability: Running Millions of Jobs

Cluster

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Capacitor

LLNL-PRES-757227
18

▪ Flux Capacitor (Depth-1)
— flux-capacitor --command_file my_command_file

▪ Hierarchical Flux Capacitor (Depth-2)
— for x in ./*.commands; do 

 flux submit -N1 flux start \ 
 flux-capacitor --command_file $x 
done

▪ Flux Hierarchy (Depth-3+)
— flux-hierarchy --config=config.json 

--command_file my_command_file

Scalability: Running Millions of Jobs

LLNL-PRES-757227
19

▪ Extensibility
— Open source
— Modular design with support for user plugins

▪ Scalability
— Designed from the ground up for exascale and beyond
— Already tested at 1000s of nodes & millions of jobs

▪ Usability
— C, Lua, and Python bindings that expose 100% of Flux’s functionality
— Can be used as a single-user tool or a system scheduler

▪ Portability
— Optimized for HPC and runs in Cloud and Grid settings too
— Runs on any set of Linux machines: only requires a list of IP addresses or PMI

Why Flux?

LLNL-PRES-757227
20

Extensibility: Modular Design

LLNL-PRES-757227
20

▪ At the core of Flux is an overlay
network
— Built on top of ZeroMQ
— Supports RPCs, Pub/Sub, Push/Pull, etc

Extensibility: Modular Design

Msg Idioms (RPC/Pub-Sub)

Overlay Networks &
Routing

Comms Message Broker

Flux Instance

LLNL-PRES-757227
20

▪ At the core of Flux is an overlay
network
— Built on top of ZeroMQ
— Supports RPCs, Pub/Sub, Push/Pull, etc

▪ Modules provide extended
functionality (i.e., services)
— User-built modules are loadable too
— Some modules also support plugins

Extensibility: Modular Design

Msg Idioms (RPC/Pub-Sub)

Overlay Networks &
Routing

Comms Message Broker

Flux Instance

Sched Framework

Remote Execution

Po
lic

y
Pl

ug
in

A

Service Modules

Resource

Key-Value Store

Heartbeat

LLNL-PRES-757227
20

▪ At the core of Flux is an overlay
network
— Built on top of ZeroMQ
— Supports RPCs, Pub/Sub, Push/Pull, etc

▪ Modules provide extended
functionality (i.e., services)
— User-built modules are loadable too
— Some modules also support plugins

▪ External tools and commands can
access services
— User authentication and roles supported

Extensibility: Modular Design

Msg Idioms (RPC/Pub-Sub)

Overlay Networks &
Routing

Comms Message Broker

Flux Instance

Sched Framework

Remote Execution

Po
lic

y
Pl

ug
in

A

Service Modules

Resource

Key-Value Store

Heartbeat

Commands

flux submit

flux-capacitor

LLNL-PRES-757227
21

Extensibility: Creating Your Own Module

LLNL-PRES-757227
21

▪ Register a new service “pymod.new_job” that ingests jobs and responds with
a Job ID

Extensibility: Creating Your Own Module

LLNL-PRES-757227
21

▪ Register a new service “pymod.new_job” that ingests jobs and responds with
a Job ID

Extensibility: Creating Your Own Module

import itertools, json, flux

def handle_new_job(f, typemask, message, arg):
 job_queue, job_ids = arg
 job_queue.append(message.payload)
 response = {‘jobid’ : job_ids.next()}
 f.respond(message, 0, json.dumps(response))

def mod_main(f, *argv):
 f.msg_watcher_create(flux.FLUX_MSGTYPE_REQUEST,
 handle_new_job,"pymod.new_job", 
 args=([], itertools.count(0))).start()

 f.reactor_run(f.get_reactor(), 0)

LLNL-PRES-757227
21

▪ Register a new service “pymod.new_job” that ingests jobs and responds with
a Job ID

▪ Load using flux module load pymod --module=path/to/file.py

Extensibility: Creating Your Own Module

import itertools, json, flux

def handle_new_job(f, typemask, message, arg):
 job_queue, job_ids = arg
 job_queue.append(message.payload)
 response = {‘jobid’ : job_ids.next()}
 f.respond(message, 0, json.dumps(response))

def mod_main(f, *argv):
 f.msg_watcher_create(flux.FLUX_MSGTYPE_REQUEST,
 handle_new_job,"pymod.new_job", 
 args=([], itertools.count(0))).start()

 f.reactor_run(f.get_reactor(), 0)

LLNL-PRES-757227
22

Extensibility: Flux’s Communication Overlay

LLNL-PRES-757227
22

▪ Connect to a running flux instance
— f = flux.Flux()

Extensibility: Flux’s Communication Overlay

LLNL-PRES-757227
22

▪ Connect to a running flux instance
— f = flux.Flux()

▪ Send an RPC to a service and receive a response
— resp = f.rpc_send (”pymod.new_job", payload) 

jobid = json.loads(resp)[‘jobid’]

Extensibility: Flux’s Communication Overlay

LLNL-PRES-757227
22

▪ Connect to a running flux instance
— f = flux.Flux()

▪ Send an RPC to a service and receive a response
— resp = f.rpc_send (”pymod.new_job", payload) 

jobid = json.loads(resp)[‘jobid’]

▪ Subscribe to and publish an event
— f.event_subscribe(“node_down”) 

f.msg_watcher_create(node_down_cb, 
 raw.FLUX_MSGTYPE_EVENT, 
 “node_down”).start()

— f.event_send(“node_down”)

Extensibility: Flux’s Communication Overlay

LLNL-PRES-757227
23

Extensibility: Scheduler Plugins

LLNL-PRES-757227
23

▪ Common, built-in scheduler plugins:
— First-come First-Served (FCFS)
— Backfilling

• Conservative
• EASY
• Hybrid

Extensibility: Scheduler Plugins

LLNL-PRES-757227
23

▪ Common, built-in scheduler plugins:
— First-come First-Served (FCFS)
— Backfilling

• Conservative
• EASY
• Hybrid

▪ Various, advanced scheduler plugins:
— I/O-aware
— CPU performance variability aware
— Network-aware

Extensibility: Scheduler Plugins

LLNL-PRES-757227
23

▪ Common, built-in scheduler plugins:
— First-come First-Served (FCFS)
— Backfilling

• Conservative
• EASY
• Hybrid

▪ Various, advanced scheduler plugins:
— I/O-aware
— CPU performance variability aware
— Network-aware

▪ Create your own!

Extensibility: Scheduler Plugins

LLNL-PRES-757227
23

▪ Common, built-in scheduler plugins:
— First-come First-Served (FCFS)
— Backfilling

• Conservative
• EASY
• Hybrid

▪ Various, advanced scheduler plugins:
— I/O-aware
— CPU performance variability aware
— Network-aware

▪ Create your own!

▪ Loading the plugins
— flux module load sched.io-aware
— FLUX_SCHED_OPTS="plugin=sched.fcfs" flux start

Extensibility: Scheduler Plugins

LLNL-PRES-757227
24

▪ Flux-Framework code is available on GitHub

▪ Most project discussions happen in GitHub issues

▪ PRs and collaboration welcome!

Extensibility: Open Source

LLNL-PRES-757227
24

▪ Flux-Framework code is available on GitHub

▪ Most project discussions happen in GitHub issues

▪ PRs and collaboration welcome!

Extensibility: Open Source

Thank You!

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the
United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall
not be used for advertising or product endorsement purposes.

