
Generalizable Coordination of Large Multiscale Workflows:
Challenges and Learnings at Scale

Harsh Bhatia∗
hbhatia@llnl.gov

Francesco Di Natale†
dinatale3@llnl.gov

Joseph Y. Moon∗
moon15@llnl.gov

Xiaohua Zhang‡
zhang30@llnl.gov

Joseph R. Chavez§
chavez35@llnl.gov

Fikret Aydin‡
aydin1@llnl.gov

Chris Stanley¶
stanleycb@ornl.gov

Tomas Oppelstrup‡
oppelstrup2@llnl.gov

Chris Neale∥
cneale@lanl.gov

Sara Kokkila Schumacher∗∗
saraks@ibm.com

Dong H. Ahn∗
ahn1@llnl.gov

Stephen Herbein∗
herbein1@llnl.gov

Timothy S. Carpenter‡
carpenter36@llnl.gov

Sandrasegaram Gnanakaran∥
gnana@lanl.gov

Peer-Timo Bremer∗
bremer5@llnl.gov

James N. Glosli‡
glosli1@llnl.gov

Felice C. Lightstone‡
lightstone1@llnl.gov

Helgi I. Ingólfsson‡
ingolfsson1@llnl.gov

ABSTRACT

The advancement of machine learning techniques and the
heterogeneous architectures of most current supercomputers
are propelling the demand for large multiscale simulations that
can automatically and autonomously couple diverse components
and map them to relevant resources to solve complex problems
at multiple scales. Nevertheless, despite the recent progress in
workflow technologies, current capabilities are limited to coupling
two scales. In the first-ever demonstration of using three scales
of resolution, we present a scalable and generalizable framework
that couples pairs of models using machine learning and in
situ feedback. We expand upon the massively parallel Multiscale
Machine-Learned Modeling Infrastructure (MuMMI), a recent,

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, California, 94550
†Applications, Simulations, and Quality, Lawrence Livermore National Laboratory,
Livermore, California, 94550
‡Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore,
California, 94550
§Global Security Computing Division, Lawrence Livermore National Laboratory,
Livermore, California, 94550
¶Computational Sciences and Engineering Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, 37831
∥Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos,
New Mexico, 87545
∗∗IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 10598

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8442-1/21/11.
https://doi.org/10.1145/3458817.3476210

award-winning workflow, and generalize the framework beyond
its original design. We discuss the challenges and learnings in
executing a massive multiscale simulation campaign that utilized
over 600,000 node hours on Summit and achieved more than
98% GPU occupancy for more than 83% of the time. We present
innovations to enable several orders of magnitude scaling, including
simultaneously coordinating 24,000 jobs, and managing several
TBs of new data per day and over a billion files in total. Finally,
we describe the generalizability of our framework and, with
an upcoming open-source release, discuss how the presented
framework may be used for new applications.

CCS CONCEPTS

• Computing methodologies → Machine learning;
Multiscale systems; Massively parallel and

high-performance simulations; Simulation tools; • Applied

computing → Computational biology.

KEYWORDS

multiscale simulations, adaptive simulations, massively parallel,
heterogenous architecture, machine learning, cancer research

ACM Reference Format:

Harsh Bhatia, Francesco Di Natale, Joseph Y. Moon, Xiaohua Zhang, Joseph
R. Chavez, Fikret Aydin, Chris Stanley, Tomas Oppelstrup, Chris Neale, Sara
Kokkila Schumacher, Dong H. Ahn, Stephen Herbein, Timothy S. Carpenter,
Sandrasegaram Gnanakaran, Peer-Timo Bremer, James N. Glosli, Felice
C. Lightstone, and Helgi I. Ingólfsson. 2021. Generalizable Coordination
of Large Multiscale Workflows: Challenges and Learnings at Scale. In
The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’21), November 14–19, 2021, St. Louis, MO, USA.ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3458817.3476210

This work is licensed under a Creative Commons Attribution International 4.0 License.

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

1 INTRODUCTION

Computational solutions to complex problems in all spheres of
science and engineering rely increasingly on multiscale modeling
and simulations to capture intricate phenomena at longer and
larger time- and length-scales than previously possible [15, 19,
32, 37, 45]. As a result, recent years have seen a remarkable shift
away from the realm of large monolithic simulations [30, 33, 69]
toward massive parallel ensembles [17, 24, 38, 58, 61] consisting of
thousands of smaller simulations at different scales, orchestrated
through sophisticated workflows. The thrust toward Exascale
computing [25] and the emerging supercomputing technologies
— particularly heterogeneous architectures — further underscore
the need for large, cross-functional workflow technologies
comprising orchestrators, services, simulations, machine learning,
data analytics, and visualization to the extent that workflows are
now being called the new high-performance computing (HPC)
applications at Exascale [9].

Enabling such large multiscale simulation campaigns on
next-generation machines requires a workflow infrastructure
capable of connecting multiple, diverse components easily,
dynamically, and transparently, while balancing the load in the
computational effort and managing the resulting data. While no
general solutions exist, efforts are underway to make these goals a
reality.

In particular, the recent presentation of MuMMI [37] offers a new
paradigm for large multiscale simulations that couples two scales —
amacro and amicro— using a dynamic sampling driven by machine
learning (ML) [12] and in situ feedback. TheMuMMIworkflow [24]
is capable of orchestrating such massive multiscale campaigns at
unprecedented computational scales, with effective utilization of
all of the heterogeneous resources on some of the largest machines
on the planet (demonstrated on Sierra, using 176,000 CPU cores
and 16,000 GPUs). This workflow can coordinate several thousand
simultaneous jobs, administer diverse components, and generate
and manage multiple TBs of data. Nevertheless, despite its initial
success, several limitations in MuMMI prevented generalization to
other scientific inquiries and scaling up the infrastructure.

In this work, we make two key technological advances. First,
we generalize the scope and design of the MuMMI framework
to facilitate broader applicability. Toward this goal, we present a
more-advanced workflow management that uses generic strategies
to couple additional modeling techniques and computational
methodologies, requiring diverse software packages and needing
versatile types of jobs, data, and compute, as well as support for
database technologies of choice. In particular, we demonstrate three
resolution scales to investigate a new scientific phenomenon of
interest and incorporate the necessary specific details, including
two levels of ML and two types of feedback. With a pending
open-source release of MuMMI, we also present guidelines to
customize and further extend this framework to support other
scientific studies.

Second, we tackle several computational bottlenecks within
the MuMMI workflow and, using new strategies, demonstrate
significantly improved scaling in performance. Examples
of such limitations were a slow feedback mechanism and
bundled-scheduling approach for simulations. Our technical

innovations improve not only the scalabilty of the MuMMI
framework but also its generalizability by allowing a more elastic
coupling of scales that may further broaden its applicability.

Contributions. This paper reports on the novelty that makes this
framework sufficiently generalizable to incorporate three resolution
scales (and potentially other applications) and support different
software tools in various HPC environments and sufficiently
scalable to enable an even larger scientific campaign. We describe
the associated computational challenges and the strategies to tackle
the seemingly mundane idiosyncrasies of modern supercomputers.
Specifically, we make the following contributions.
(1) Generalizations of MuMMI: (a) support for diverse modeling

techniques, with a specific focus on an extension to three

resolution scales, two layers of ML-based selection, and two
types of feedback; (b) incorporation of database technologies;
and (c) generic, extendable APIs and open-source framework.

(2) Scaling of the workflow performance: (a) more than 12×
faster feedbackmechanism to enable more-frequent coupling
of scales; (b) explicit simulation-to-job mapping to directly
control each simulation, supported by an almost 3× faster job

scheduling; and (c) more-efficient ML framework supporting
almost 165× more data for dynamic, real-time decision
making.

(3) A demonstration of the largest simulation campaign of its
kind: (a) including a full-system run on Summit, the
second-most-powerful supercomputer in the world, (b) utilizing
over 600,000 node hours, (c) with more than 98% GPU

occupancy for more than 83% of the time, (d) simultaneously
coordinating 24,000 jobs, (e) creating and managing several

TB’s of data each day, and (f) handling over a billion files

in total.

2 RAS-RAF-MEMBRANE DYNAMICS

Mutations of RAS proteins are implicated in nearly a third of
all human cancers diagnosed in the US, including significant
proportions of pancreatic (∽95%), colorectal (∽45%), and lung
(∽35%) cancers [59, 66]. Consequently, there is significant interest
in unraveling the underlying biological mechanisms in order to
develop effective treatments. However, despite studying RAS and,
in particular, KRAS (the most frequently mutated form of RAS [71])
in various cancers for years, no FDA approved therapies that target
these mutations are currently available; thus, RAS has often been
labeled undruggable [43]. Nevertheless, recent progress [53] shows
that fundamental research encourages therapeutic development.

RAS proteins are localized on the inside of cellular plasma
membranes (PMs) and act as molecular switches in cell growth
signaling. Only activated RAS proteins can initiate signaling by
binding to downstream effector proteins, particularly, RAF proteins.
The mechanism by which RAS and RAF localize on the PM is
hypothesized to be crucial for activating the signaling pathway.
However, the precise role of the membrane composition (e.g.,
charged vs. neutral lipids), membrane dynamics (e.g., undulations
and domain formation), and other physiochemical properties in
affecting such localization is not fully understood.

Computational modeling of these phenomena is challenging
because the binding of RAS and RAF at the PM is inherently

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

Generalizable Coordination of Large Multiscale Workflow: Challenges and Learnings at Scale SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 1:We showcase amassive simulation campaign that focuses on an important signalingmechanism to the cellmembrane

through RAS-RAF protein complex and simulates the relevant interactions at three scales of resolution. These scales are

coupled through ML-based selection in a pairwise manner to promote important configurations from coarse to fine scale.

a multiscale process. Particle-based models are inefficient at
exploring all unique molecular interfaces between RAS and RAF
and incur long wait times for speculative association, which
are largely dependent on diffusion. Different types and scales
of molecular dynamics (MD) simulations are used to model
the relationships between structure, dynamics, and function in
biological macromolecules. In particular, all-atom (AA) [44, 56, 64],
coarse-grained (CG) [31, 36, 51, 63], and ultra-CG [55, 60, 73]
models have been used to simulate biomolecular systems. Long
continuous simulations have extended into the high µs to ms
range [35, 56, 64, 71], and large ensembles of shorter simulations
have accumulated multiple ms [6, 44, 52, 72, 76]. Nevertheless, a
typical limitation of such simulations is that the ones that are
expansive in either size or duration are inadequate in the other
dimension, i.e., large but short or long but small.

This is precisely the challenge addressed by the multiscale
modeling infrastructure MuMMI [24, 37]. To expand both the time-
and length-scales concurrently,MuMMI uses relatively inexpensive
models for rapid exploration coupled with more-descriptive models
that provide sufficient resolution. For example, a macro model using
a continuum description to evolve lipids according to dynamic
density functional theory (DDFT) [50] can easily achieve ms and
µm scales [37], which MuMMI uses to spawn and direct MD
simulations at the required fidelity. Here, we expand uponMuMMI
to characterize the key events that trigger oncogenic signaling in
RAS-RAF-membrane systems, as depicted in Figure 1.

3 RELATEDWORK

Commonly available batch systems such as SLURM [77] and
LSF® [67] rely on the ability to utilize MPI-type communication to
span a set of resources with fixed resource requirements. However,
with a significant departure from the traditional approach of
large, single application jobs, modern workflows are becoming
increasingly complex webs of intercommunicating stages and
microservices [9].

There exist several solutions focusing on assembling
complex post-processing capabilities [5, 22, 39] and large
static ensembles [21, 27, 57] as well as tools for orchestrating such
parameter studies [2, 8, 23]. Broadly, such tools lack the flexibility
needed for dynamic workflows. In contrast, there also exist
solutions [16, 20, 26] that can couple different solver codes together
by exchanging information, such as boundary conditions or even

entire grids, between the solvers. However, such approaches, by
design, provide extreme tight coupling, are intrusive, and cannot
be adapted easily.

Recently, there has been a growing focus on the use of
ML in workflows to dynamically steer the ensemble towards
configurations of import and to overcome the limits of
computational scales otherwise achievable. MuMMI [24, 37],
a recent, award-winning framework, is a premier example of
ML-driven, dynamic workflows and offers a new paradigm of
multiscale simulations by coupling two scales of resolution,
demonstrated in the context of cancer research. The more-recent
works of Casalino et al. [17] and Jacobs et al. [38] also utilize
different forms of deep learning to deliver large multiscale
simulations in exploration of COVID-19.

MuMMI: Multiscale Machine-Learned Modeling Infrastructure. Of
special relevance to our work isMuMMI [24, 37], which provides
a bidirectional coupling of two scales — a macro and a micro
— using ML for forward coupling and in situ feedback for
backward. By using ML to dynamically select the most novel macro
configurations [12], MuMMI continuously steers the multiscale
simulation towards new exploration and, given enough time, can
simulate every type of configuration either directly or as a proxy
to a similar enough configuration. MuMMI also analyzes the
ongoing micro scale simulations and can use their results to update
the less-accurate, macro model, thereby, creating a self-healing
mechanism, which, given enough time, will improve the accuracy
of the coarser model. As a result, MuMMI can achieve macro time-
and length-scale, but with an effective accuracy of micro scale.

With a DDFT-based continuum model as the “macro scale” and
a CG model as the “micro scale”, MuMMI previously coupled
two models to study the interactions of RAS proteins with the
PM — a simpler and smaller version of our target study, which
makes MuMMI a potential solution for our goals. MuMMI was
demonstrated to scale on all of Sierra [24], occupying all of the
available GPUs to create a massive ensemble of CG simulations,
which led to new insights into RAS protein dynamics on the PM
and the influence of lipids and lipid fingerprints [37].

Despite its capabilities and successful demonstration,MuMMI
was tailored to the two specific models used previously [24, 37] and
had certain computational limitations that prevented further scaling.
Among others,MuMMI was completely reliant on the filesystem
and, therefore, was bottlenecked by the GPFS throughput. This

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

limitation resulted in a need to explicitly throttle the rate of certain
I/O operations, most prominently, during feedback. Furthermore,
scaling in job scheduling was obtained by bundling jobs of similar
kind to alleviate the load on the scheduler. Nevertheless, such
an approach is undesirable since it prevents explicit control over
individual jobs. Broadly, all components of MuMMI, including job
and data management, data and control communication, as well as
the exposed API, were tightly integrated with the specific problem,
preventing utilizing MuMMI for our new application.

4 GENERALIZABLE AND SCALABLE MUMMI

In this work, we present a new design that expands the
generalizability and scalability of MuMMI and demonstrates these
innovations by extending the MuMMI workflow to support a third
scale of resolution. Hereafter, unless explicitly noted,MuMMI refers
to our new, improved, and generalizable framework.

Broadly, a multiscale model can be developed through pairwise
coupling of scales. For any two scales, some basic building blocks
are needed: (1) simulation and analysis at the two (coarse/fine or
macro/micro) scales, (2) a method to couple the two representations,
(3) an automated approach to decide which coarse representations
to promote to the fine scale, and (4) a method to perform feedback.

In this context, we design MuMMI as comprising two parts —
the application and the coordination (see Figure 2). The former
defines the application scope (in terms of the building blocks listed
above), e.g., what scales are relevant, what codes and/or simulation
tools to use, what ML techniques are suitable, and how is the
feedback performed? These components are typically designed
by computational scientists who are experts in the corresponding
domains; the actual details may vary across applications or even
across simulations. The role of the generalizedMuMMI workflow
(the coordination part) is to tie together the different application
components to facilitate the multiscale simulations.

We first discuss the specific details of our three-scale application,
followed by generic and tailored strategies for coordination.

Figure 2:We present a generalizable and scalable framework

to couple diverse models at different resolution scales. The

“application” components (top) define the three scales and

may be swapped to support other applications, whereas the

“coordination” components (bottom) provide an interface

to couple the associated tools, software components, and

technologies to facilitate scalable simulation campaigns.

4.1 The Three-Scale MuMMI

This work uses three scales of resolution: continuum, coarse grained
(CG), and all atomistic (AA), along with two types of ML-based
selection and two types of in situ feedback. Although every
application component used in this work has notable innovations
in itself, whether modeling, development, or performance, we
describe these components only briefly, focusing largely on
their considerable computational versatility that challenges the
workflow.

(1) The Continuum Simulation. The coarsest of the three scales
is a macro model that provides speed at the cost of accuracy.
Our macro model is a continuum description of lipids that uses
DDFT [50] for representing lipid dynamics in terms of their
density fields. Proteins (positions and configurational states) are
represented as particles that interact with each other and with the
lipids This model comprises a 1 µm × 1 µm bilayer discretized
as a 2400×2400 grid, with 8 lipid types in the inner and 6 types
in the outer leaflet [34]. We use a custom simulation package,
GridSim2D — a parallel CPU code written in C++ that uses MPI for
communication. Using a total of 3600 MPI ranks (24 CPU cores per
node at 150 nodes), GridSim2D can simulate ∽0.96 ms per day of
walltime. With an I/O rate of 1 µs, a new snapshot is delivered every
90 seconds and, when stored in a custom binary format, consumes
∽374 MB of disk space.

(2) Createsim: Mapping Continuum-to-CG. Compared to the
continuum scale, the CG and AA simulations are restricted in
the spatial extent due to high computational cost. To couple
continuum with these scales, 30 nm × 30 nm “patches” are cut out
of continuum snapshots in regions that may be of interest for CG
and AA simulations. The createsimmodule transforms a patch from
continuum representation into a particle-based one. The insane
tool [74] is used to create a CG representation of the membrane
and proteins. Once constructed, GROMACS [1] is used to relax the
membrane and proteins into a more natural, equilibrated, state in
preparation for simulation. Createsim is a custom Python-based
code that uses 24 CPU cores and, on average, takes ∽1.5 hours to
complete.

(3) CG Simulations and Analyses. Given the particle
representation of lipids and proteins, CG simulations with the
Martini force field [51] are performed using the CUDA®-enabled
version [78] of ddcMD [68]. Custom, Python-based analysis
is executed simultaneously on the same computational node
and accesses the local on-node RAM disk for analysis of the
MD trajectories generated by the corresponding simulation.
Each ddcMD simulation uses one GPU and one CPU core; the
corresponding analysis is allocated 3 CPU cores. With this setup
and an average of ∽140,000 particles, ddcMD delivers ∽1.04 µs
of MD trajectories per day per GPU [78], and produces about 4.6
MB new data every 41.5 seconds. The analysis module is tuned
to finish inspecting each snapshot within this time period and
generates 17 KB additional data every 41.5 seconds.

(4) Backmapping: Mapping CG-to-AA. To overcome the
limitations of the CG model [4], it is further refined using a
backmapping scheme that translates a CG representation in time
into AA using the CHARMM36 force field [10]. This procedure

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

Generalizable Coordination of Large Multiscale Workflow: Challenges and Learnings at Scale SC ’21, November 14–19, 2021, St. Louis, MO, USA

retrieves a selected snapshot from the ddcMD trajectory, converts
the CG to the AA model using a modified version of the
backward tool [75], performs cycles of energy minimization and
position-restrained MD using GROMACS [1], and finally converts
the data format from GROMACS to AMBER using ParmEd [65].
Using 18 CPU cores, each backmapping run takes ∽2 hours on
average to complete. Each backmapping calculation produces 2.9
GB data every 2 hours on the local on-node RAM disk and about
0.5 GB data is backed up to GPFS to initialize an AA simulation.

(5) AA Simulations and Analyses. Once backmapped, the AA
configurations are simulated using the AMBER MD simulation
package [18, 62]. One GPU is allocated to each simulation because
the multi-GPU setup is inefficient due to slow communication
across GPUs or across nodes. Instead, similar to the CG case,
many single-GPU MD simulations are run in parallel to achieve
better GPU utilization, and a Python-based analysis module is
executed that analyzes new AA trajectory snapshots as soon as they
are generated. The average atomistic simulation system includes
1.575 M atoms and the simulations generate almost 13.98 ns per
day per GPU. A simulation produces one frame every 10.3 minutes
at 0.1 ns frame rate, where the size of each frame is about 18 MB.

(6) ML-based Patch and CG Frame Selection. Our three-scale
simulation campaign requires two layers of sampling to couple the
scales in a pairwise manner — both layers are similar in philosophy
but differ in technical details. The 30 nm × 30 nm patches
extracted from the continuum data are evaluated for “novelty”
in a reduced, 9-D representation generated by a metric learning
approach implemented using a deep neural network. Similar to
the work of Bhatia et al. [12], a farthest-point sampling approach
is used to identify novel configurations, although our patches are
almost 55× larger (sampled on a 37×37 grid instead of 5×5). In
the case of relevant CG frames, the conformational state of the
RAS-RAF complex is coded using a 3-D representation, which unlike
the representation of patches is not conducive to farthest-point
sampling. As a result, a new framework is developed to identify
novel frames through a discrete, histogram-based sampling in this
3-D space.

(7) CG-to-Continuum and AA-to-CG Feedback. The
CG-to-Continuum feedback aggregates the protein-lipid
radial distribution functions (RDFs) computed through the online
analysis of CG simulations and propagates the aggregated result
to the ongoing continuum simulation, which reads and updates
these parameters on the fly. Each feedback iteration must rapidly
process new frames (specifically RDFs), which are expected to be
created every 3–4 minutes per simulation, or 900–1200 new frames
per minute for a moderately sized allocation that runs 3600 CG
simulations simultaneously. In the case of AA-to-CG feedback, the
secondary structures of the proteins are calculated from AA frames
and analyzed to determine the most common pattern of protein
secondary structure observed in the AA simulations. The force
field parameters of the CG protein model depend on the secondary
structure, and, therefore, the parameters are progressively refined
to enable a more accurate CG model. Although the rate of incoming
frames is lower for this type of feedback, each frame requires
longer processing: 2400 new frames every ∽10 minutes (assuming

2400 AA simulations at 1000-node scale), and processing each
frame needs two system calls to an external module, taking ∽2 s in
isolation.

4.2 Generic Framework for Data Management

A natural by-product of large simulation campaigns enabled by
MuMMI is the tremendous amounts and variety of data. The size
of data is usually only one of the many concerns, as computational
limitations may be related to the intended use of the data. For
example, some data may need to be accessed only after the
simulation whereas other may need to be read/updated by one or
more simulation components in situ. Both situations pose different
types of problems and require different solutions. MuMMI’s earlier
approach for data management was to use effective archiving of
data, which works very well for the former (i.e., write only) but not
so much for the latter. In order to support frequent feedback loops
(i.e., requiring fast access and a systematic way of tracking what
data has been processed), database-based approaches are ideal but
they may not support very large files, e.g., MD trajectories.

Rather than speculating on all possible scenarios and creating
tailored implementations, we have developed an abstract notion of
a data interface to support different specific backends. Currently,
we use three backends: filesystem, taridx, and redis. By providing an
abstract API, it becomes possible to have custom implementations
of standard data formats, e.g., save a Numpy archive into a byte
stream that can be redirected effortlessly to a file, an archive, or a
database — all with a single configuration switch. The availability of
these data interfaces inMuMMI provides immense flexibility to the
application developer as the specific modules can be implemented
largely agnostic to the read-write details, and to the workflow
developer as different specific interfaces can be implemented and
tested in isolation and relatively easily, reducing the the overhead
for development of new functionality and applications.

The simplest data interface accesses the filesystem directly,
i.e., reads/writes data from/to disk. This functionality is most
suitable for small files, e.g., those that store the state of the
simulation (checkpoints, logs, etc.), those that may need to be
analyzed or transferred in isolation, and those that may need to
interface with standard tools (e.g., GROMACS, AMBER, etc.) and
hence are constrained to certain nonstandard data formats. Where
needed, I/O armoring and redundancy is used to guard against
filesystem failures, e.g., backups of checkpoint files and retrials if
reading/writing fails.

Nevertheless, saving individual files at scale can throttle the
filesystem due to the sheer amount of inodes. One of the simplest
ways of reducing the inode count is to collect files into archives.
To support archiving millions of files, we provide random access
through a complementary index file. We have expanded MuMMI’s
archiving capabilities and packaged them into a more-generic
and more-scalable module, pytaridx, which is used for managing
arbitrary data formats (i.e., read/write of generic byte streams and
text streams) with a fast throughput. The archives created using
the pytaridx are standard tar files, which are portable and can be
used with the commonly-available decoder. Archiving the data
is a simple and elegant solution for managing a large number of
files. By design, this approach prevents data corruption due to

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

hardware/software failures since the file is written in append mode
only.

The same functionality, however, prevents updating the data
if needed. In many cases, data may need to be updated, deleted,
or moved after certain processing steps, making the archiving
strategy unsuitable. Although one may explicitly manipulate the
associated index files to “remove” a key, the data itself cannot be
updated. Therefore, for in situ feedback loop, we employ a database
backend. In particular, we use the Python interface of Redis™ [46]
to store any data that needs high throughput and update operations.
MuMMI’s redis interface sets up a cluster of Redis servers that are
allocated randomly to all compute nodes. AnyMuMMI component,
application or coordination, can interact with the redis interface for
data queries, whereas all internal details (e.g., database and cluster)
are abstracted from the user. By utilizing Redis, we eliminate the
need to store and read RDFs from disk; instead, we leverage Redis
as a short-term and highly responsive in-memory cache to reduce
the amount of time per feedback loop. Furthermore, performing
feedback through Redis reduces the load on GPFS and allows it
to be performed away from any additional mechanisms that may
severely delay read/write from/to a highly contested directory, such
as directory locking and other OS level blocking calls.

4.3 Improvements in Job Scheduling

TheMuMMI workflow facilitates a deliberate resource placement
strategy to maximize simulation throughput and provide effective
use of heterogeneous resources. There are three key novelties that
we have incorporated in MuMMI’s scheduling approach.

First, we assign GPUs to simulations individually rather than
per-node — a crucial functionality both for explicit control over the
simulations and for effective use of heterogeneous architectures.
Previously [24], MuMMI scaled the job scheduling by bundling
simulations on compute nodes, with each simulation in the bundle
consuming one GPU (on Sierra, 4 GPUs/node translated to 4
simulations/job). Although scalable, this bundling strategy prevents
controlling each simulation explicitly, reducing the effective use
of resources (with the worst case utilization of 1/4, when a single
simulation keeps the job alive and continues to occupy the node).
This limitation would only exacerbate when moving to Summit
(6 GPUs/node leads to worst case utilization of 1/6). To facilitate
effective use of resources for simulations of interest and to provide
direct control of the simulations to the application, we “unbundle”
the jobs and place each simulation as an independent job, even at
the cost of 6× increase in the number of jobs.

Second, we make explicit use of subprocesses to combine the
simulation and corresponding analysis for direct user control
over the simulation. This approach simplifies and generalizes
the workflow in two ways: MuMMI needs to monitor only
the Python-based analysis job, which internally handles the
starting, monitoring, checkpointing, and, if needed, restoring a
simulation, as well as ensuring that the in situ analysis keeps up
with the ongoing simulation. Second, this allows an application
developer to implement new types of simulation and analysis easily,
without intrusion from the workflow.MuMMI provides an abstract
framework and several utilities for defining simulations beyond
our current application.

Finally, to support handling arbitrary types of jobs, we provide
a generic and abstract Job Tracker that can be customized using a
combination of inherited classes and configuration files. Without
loss of generality, describe the resource and job placement (on
Summit) for our target simulation campaign, which requires four
types of jobs: CG setup, CG simulation/analysis, AA setup, and
AA simulation/analysis. In this case, both types of simulations use
one GPU each and are bound to two CPU cores each that share
cache. Each corresponding analysis task is placed on a small number
of CPU cores that are closest to the PCIe bus to ensure fast data
movement. Finally, all setup jobs work exclusively on CPU cores
and are assigned 24 cores within a node, reserving all GPUs for
simulations only and preventing inter-node communication.

Tools for Job Scheduling.To achieve portability in job scheduling,
theMuMMIworkflow interfaces with Maestro [23], which provides
a consistent API to schedule and monitor jobs. At the back-end,
Maestro can interface with different job schedulers. By absorbing
the changes and peculiarities of different job schedulers, Maestro
allows MuMMI to be agnostic to the specific choice of scheduler.

For job scheduling, we use Flux [3], which is a fully-capable
HPCworkload manager, equipped with both a hierarchical resource
manager and a batch-job scheduler, and has many features designed
to meet the needs of emerging, large-scale workflows. One
particularly useful feature is the single-user mode, which allows the
user to instantiate an “isolated HPC system” within a standard
batch allocation, facilitating complete control over jobs within
the workflow. Flux provides many policy knobs to customize the
scheduling behavior. Here, we select throughput-oriented options
for queuing (i.e., first come, first served with no backfilling) as
well as resource matching (i.e., low resource ID first) to map the
different type of jobs precisely according to their resource and
affinity requirements.

4.4 Workflow Management

MuMMI is coordinated by a configurableWorkflow Manager (WM).
Generically, the role of theWM is to couple the scales by consuming
relevant data (in this case, from continuum and CG simulations),
supporting ML-based selection, spawning the corresponding
simulations (CG and AA, respectively), and facilitating a feedback
loop by ingesting and aggregating data from up to tens of thousands
of running simulations. The WM is also responsible for tracking
all running jobs, managing data, profiling, and several other tasks.
Here, we detail some key functions performed by the WM in the
specific context of the RAS-RAF-PM simulation campaign.
Task 1: Process coarse-scale data for consumption. The data
generated by the continuum simulation spans 1 µm × 1 µm and
must be parsed to generate 30 nm × 30 nm patches of interest
(regions around RAS and RAF proteins). The WM coordinates the
Patch Creator, which reads each snapshot, creates patches, and
outputs them for consumption by the rest of the framework. It takes
∽14 s to process a single snapshot and save the resulting patches
in a standard Numpy format; each patch occupies about 70 KB of
disk space and offers simple and portable I/O. Processing CG data is
challenging, since unlike the continuum scale (only one simulation),
several thousand CG simulations are executed simultaneously.
Parsing thousands of CG trajectories to extract frames poses

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

Generalizable Coordination of Large Multiscale Workflow: Challenges and Learnings at Scale SC ’21, November 14–19, 2021, St. Louis, MO, USA

significant I/O cost on the (central) WM and is, therefore, done in a
distributed manner. For fast throughput, each CG analysis outputs
the frames of interest in the form of identifying information (∽850
B) that is minimal and sufficient for the downstream tasks.

Task 2: Select important patches/frames for spawning new

CG/AA simulations. A custom, abstract API was developed using
the DynIm framework [12, 14] that was extended by both the
Patch Selector and the (CG) Frame Selector to implement specific
procedures. Both selectors operate on DynIm’s high-dimensional
point objects and, hence, are agnostic to the specific encoding
of patches and frames. These encoded representations may
be computed using a ML inference engine (as done by the
Patch Selector), a simpler dimensionality reduction (e.g., principal
component analysis), or any configurational representation (as done
by the Frame Selector).

New candidates (patches and frames) for selection are ingested by
the WM as soon as new data is generated, whereas new selections
are made upon request, i.e., when simulations turn over and/or
new resources are available. Since selection events are orders of
magnitude fewer than addition events, we use a caching scheme
to postpone expensive computations until the time of a selection,
which makes the cost of adding new candidates negligible. Both
selectors also support dynamic and almost-real-time selection.

To support the application need, we incorporate five in-memory
queues in the Patch Selector for sampling different protein
configurations. For computational viability, each queue is capped
at 35,000 patches. When fully populated, it takes 3–4 minutes
to update the ranks of all candidates within all queues; then,
the cost of selecting the top candidates is trivial. Given the 9-D
encoding of patches, the ranks are updated using approximate
nearest neighbor queries (with L2 distances) powered by the FAISS
framework [41, 42].
Unlike the encoding used for patches, the Frame Selector relies

on a 3-D encoding of CG frames that represents three disparate
quantities; therefore, the L2 distance is not meaningful. To support
a functionally useful sampling, a binned sampler was developed
(using the DynIm API) that allows treating the three dimensions
of the encoding separately. The binned sampling approach also
facilitates control over the balance between importance and
randomness — another functional requirement for the selection of
CG frames. This new sampling approach is capable of providing
significantly faster updates to ranking: 3–4 minutes for 9 M
candidates.

Task 3: Schedule and manage (tens of thousands of) jobs.

To maximize resource occupancy, the WM regularly scans all
running jobs to determine completion (either success or failure)
and submits new jobs (or resubmits failed ones) to re-engage
resources as soon as they become available. If a new setup job
(createsim or backmapping) is needed, a new selection (of patch or
CG frame, respectively) is made, and the just-concluded setup job(s)
are queued for the corresponding simulation. When new simulation
jobs are needed, these queued ones are picked. To prevent GPU
downtime, sets of CG and AA simulations are kept prepared (setup
completed) in anticipation. The sizes of these sets are a trade-off
between readiness for availability of resources and simulating
stale configurations. This user-configurable trade-off governs the

utilization of CPUs since setup jobs work on CPUs only and a full
buffer prevents new setup jobs. We note that these specific details
about the job monitoring can be controlled by the user through
specific configurations of different types of Job Trackers, e.g., the
interdependence of jobs, the resource and time requirements, and
the specific ways of assessing success and failure of the simulations.

Task 4: Facilitate frequent feedback iterations. Generically,
a feedback iteration collects data from all running simulations,
processes it, and reports the analysis. A new abstract API, the
Feedback Manager was developed to allow controlling the specific
details.
In the case of CG-to-Continuum feedback, whereas the rate

of incoming data is high (900–1200 new frames per minute for
a typical allocation), each data point itself is small and easy to
process. New frames can be fetched in parallel (when reading
from files) or serial (when using a high-throughput database).
Next, whereas the reporting of the results is trivial, the WM
needs a way to “tag” the processed frames to prevent reprocessing.
Maintaining this information in-memory would be simple but
prohibitive at scale, requiring comparisons of (the ids of) new
frames against processed ones and checkpoint this in-memory
information frequently to guard against hardware or software
failures. Instead, we use an alternate strategy of moving each
processed frame out of the relevant namespace (i.e., moving files
to tar archives or renaming keys in the database). Although this
strategy adds to the time needed to complete any given feedback
iteration, it lends immense scalability since this cost scales only
with the number of ongoing simulations, and not with the total
simulation frames ever generated. The AA-to-CG feedback uses
similar strategies, with a key difference being that it deals with
fewer frames, each of which takes longer to process. Together with
customizable backends and tailored multiprocessing pools, these
improvements and the abstract Feedback Manager allowed us to
tailor both types of feedback to finish within the given time limit.

Parallelism and Locking. These four tasks are largely
independent and can be performed in parallel. Nevertheless, these
processes may need to share certain objects (e.g., Patch Selector
is used for both ML selection and feedback). The WM facilitates
appropriate mechanisms to prevent race conditions. Specifically
in this work, thread-safe objects are used with a mix of blocking
and nonblocking locks. Although essential, these strategies also
impact performance, e.g., when feedback process may have to wait
to acquire the lock.

Resilience to System Failures. MuMMI creates its resilience
strategy by composing fault tolerance support built directly into
some of the key software tools it uses. For example, Flux provides
resilience against compute node failures; it has full support to
detect node failures and to drain the failed nodes so that no new
jobs can be scheduled while keeping the existing jobs running.
Similarly, Redis is an industry standard that utilizes redundancy to
mitigate failures in communication. MuMMI is designed to inherit
much of the basic resilience support in these tools. Furthermore,
our workflow employs thorough checkpointing mechanisms to
guard against software and hardware failures and can be restored
completely after any such crash without much loss of data. All

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

simulations are checkpointed with their own simulation code
at ∽15 min interval, and any missing frames can be rerun, if
needed. Backups of checkpoint files are also maintained to mitigate
issues of filesystem failures during checkpointing. Data I/O and
communication is organized in a way that if the data producer
fails, the consumer components simply wait until the producer is
restored and continues to provide new data. On the other hand, if
a consumer fails, the unconsumed data simply aggregates and is
supplied when consumer is brought up online again. In addition
to checkpointing, key components (ML and job scheduling) also
maintain elaborate history files that may be replayed exactly, if
necessary. Our archiving strategy is also robust against failures —
in the event of a failure during a write, the same key gets reinserted
and is taken to be the correct value.

4.5 Portability and Generalizability

The two-part software architecture of MuMMI is highly
generalizable. The first part (coordination) is composed of several
general-purpose and well-tested (e.g., Redis, Flux, and Maestro) or
newly built (e.g., pytaridx and DynIm) tools to provide a completely
general workflow and data management platform. Through its
second part,MuMMI plugs domain-specific logic into this platform.
Most of such composition is done via well-defined interfaces.
Whereas some of the highly domain-specific components may not
be general, the overall framework itself remains highly general as
other applications can swap out our domain-specific components
in exchange for other suitable components via the same interfaces.
Furthermore, although the sheer scale and complexity of the
MuMMIworkflow and the capabilities it enables necessitates expert
HPC usage, we have spent substantial effort in alleviating the barrier
to entry for advanced and motivated users, focusing on the usual
yet important challenges of deployment, portability, and extension.

At the highest level, the different components of MuMMI
depend upon about 20 software and tools directly, whereas the
size of the complete dependency tree exceeds 150 packages. Several
dependencies are standard packages whereas others are small tools
with little or no support. We address the challenges in porting
and deploying the software stack using Spack [28] to streamline
the process. Where necessary, we created additional packages and
uploaded to the Spack repository [29] to have a consistent way
to deploy MuMMI. We have successfully deployed MuMMI not
only within large HPC environments but also on standard laptop
computers (for testing and use of individual components).

With the goal of community adoption in mind, we are currently
making progress toward an open-source release of MuMMI. Several
independent components are already available open-source, e.g.,
ddcMD [78], DynIm [14], Maestro [23], and Flux [3]. We make the
MuMMI workflow portion available through GitHub1 and Spack,
which, in conjunction with the already open-sourced components,
will allow expanding the applicability of this framework.

The MuMMI workflow is written in Python and is, therefore,
portable and easy to incorporate in new projects, either piecewise or
as a whole. Given an application scope (e.g., tools to run simulations
of different types), one can build upon the templates provided
by the MuMMI workflow to customize for the specific use cases.

1https://github.com/mummi-framework

Table 1: MuMMI can seamlessly (re)start runs at different

computational scales. This work utilized over 600,000 node

hours on Summit using several runs at varying scales.

#nodes wall-time #runs node hours
100 6 hours 5 3000
100 12 hours 3 3600
500 12 hours 3 18,000
1000 24 hours 20 480,000
4000 24 hours 1 96,000

0 1 2 3 4 5
Simulation Length (s)

0

5

10

15

N
um

be
r o

f S
im

ul
at

io
ns ×103

CG
total = 34,523

0 10 20 30 40 50 60 70
Simulation Length (ns)

0

1

2

×103
AA

total = 9632

Figure 3: MuMMI enabled a large three-scale simulation of

RAS-RAF-PM interactions probed using thousands of CG

and AA simulations with varying lengths (as shown), and a

single continuumsimulation (not shownhere) to cover large

length- and time-scales that ran for over 20.5 ms.

For example, the abstract Job Tracker can be extended through
inheritance and configuration files for individual job specifications
(e.g., commands and resources). Similarly, the abstract Feedback
Manager can be extended to specify for the exact nature of feedback
suited to the application (e.g., how to read, interpret, and aggregate
the data). The abstract data interfaces may be extended or additional
interfaces may be created using the provided API for specific
handling of nonstandard data types or additional types of database
services.

5 SUCCESSES AND CHALLENGES AT SCALE

In order to demonstrate MuMMI’s capabilities at
large computational scale, we use Summit [54] — the
second-most-powerful supercomputer in the world (and the
most powerful in the US) at the time of this work [70]. Summit
is the premier example of heterogeneous architecture at this
scale: the machine has 4608 computational nodes, with each node
comprising two IBM® POWER9™ CPUs with 22 cores each and
six NVIDIA Volta™ V100 GPUs. Therefore, Summit is uniquely
suited for the use and demonstration of MuMMI. The development
and testing of MuMMI was done also on Lassen [47], a similar but
smaller machine.

5.1 Summary of the Simulation Campaign

We ran a large multiscale simulation of RAS-RAF-PM interactions
on Summit from Dec. 2020 through Mar. 2021. Over this period of
about three months, we ran several jobs of lengths up to 24 hours to
perform a single multiscale simulation campaign continued using
checkpoint files and utilized a total of over 600,000 node hours.

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

Generalizable Coordination of Large Multiscale Workflow: Challenges and Learnings at Scale SC ’21, November 14–19, 2021, St. Louis, MO, USA

0.25 0.50 0.75 1.00
Performance (ms/day)

0

2

4

N
um

be
r o

f F
ra

m
es

×103 Continuum

134 136 138
System Size (Thousand particles)

0.25

0.50

0.75

1.00

Pe
rfo

rm
an

ce
 (

s/
da

y)

CG

mean
[mean-std, mean+std]
[min, max]

1.56 1.58
System Size (Millon particles)

12

13

14

Pe
rfo

rm
an

ce
 (n

s/
da

y)

AA

mean
[mean-std, mean+std]
[min, max]

Figure 4:MuMMI delivered expected performance for the different scales of simulations. At continuum scale, the performance

shows two prominent peaks that correspond to different number of CPU cores used. Performance of CG and AA simulations

with respect to the system size show tight distributions aroundmean, although the slowest runs showed significant slow down.

Table 1 lists the different types and counts of jobs that were used for
this run and also highlights the flexibility of the MuMMI workflow
to seamlessly switch the scale up or down as needed, e.g., restoring
from a 500 node job to start a 1000 node one or vice versa.

As part of this execution, the continuum simulation produced
20,507 snapshots spaced 1 µs apart. The MuMMI workflow
processed these snapshots and generated 6,828,831 patches, which
were dynamically evaluated for novelty using ML. Based on novelty
and availability of resources, 34,523 (= 0.5%) were selected and
corresponding CG simulations were spawned. Through analysis of
these CG simulations, 9,837,316 relevant CG frames were identified
to be candidates for AA, of which, our sampling framework selected
9632 (= 0.098%) for spawning AA simulations. The CG and AA
simulations were run to a maximum length of 5 µs and 50–65 ns,
respectively (see Figure 3 for complete distributions).

In total, this simulation campaign accumulated over 20.5 ms of
a single continuum simulation (1 µm × 1 µm large), 96.67 ms of
CG trajectories (∽140 K particles), and 326 µs of AA trajectories
(∽1.6 M atoms) — far ahead of any state-of-the-art simulation. For
comparison, the earlier demonstration of MuMMI [24, 37] produced
about 150 µs of continuum, 200 ms of CG, and no AA simulations.
The other key difference is that our study conducted fewer but
longer simulations; regardless, the MuMMI workflow can easily
support different use cases.

Simulation Performance. Simulation performance was
measured individually and compared against the expected peak
performance (see Section 4.1). The observed performance using
the three types of simulations throughMuMMI is summarized in
Figure 4.

In the case of the continuum simulation, the distribution of
performance has three modes – each is associated with a certain
size of the allocation (see Table 1). The typical configuration used
3600 CPU cores (150 nodes and 24 cores per node) and delivered
the expected performance of ∽0.96 ms/day, whereas scaled-down
performance was obtained using fewer CPU cores (100 and 500
node runs). The performance of CG and AA simulations depend
upon the size of the corresponding system (the number of particles).
In the case of CG, about one third into the simulation, we identified
an issue with our software stack that ddcMD was compiled with

an incompatible version of MPI, causing it to deliver almost 20%
less than the benchmark [78]. Full performance was achieved after
the fix; nevertheless, the overall distribution (shown in the figure)
remains suboptimal. The performance of AA simulations (also
highlighted in the figure) matches closely the AMBER benchmark
measured outside of MuMMI.

5.2 Performance and Scaling of the Workflow

Given multiple types of simulations, our framework facilitates
flexible configuration of the resource set, e.g., a typical run used
60%–80% of the total GPUs for CG whereas the remaining were
assigned to AA. To measure the performance of the workflow,
we report the occupancy of resources in terms of the (percent
of) time each GPU and CPU was working. MuMMI’s profiling
mechanism gathers the number of running and pending jobs every
few minutes (for most of this campaign, profiling frequency was 10
min). Given the resource requirement for each job type, it is then
straightforward to gather the number of occupied and unoccupied
resources.

Figure 5 shows the distribution of the resource occupancy
normalized with respect to the total size of the resource set (to
account for the different sizes of allocations). The plot demonstrates
an excellent GPU occupancy — 98% of all available GPUs were
allocated for more than 83% of the total time (captured as profile
events), with an average GPU occupancy of 93.73% and a median
of 99.93%. The CPU occupancy, on the other hand, was lower, with
most of the time, only about 50% allocated — on an average 54.12%
allocated with a median occupancy of 50.48%. As before [24], this
low average utilization is indicative of an application requirement,
where CPU jobs are to be scheduled only when needed to
prevent simulations of stale configurations (discussed in Task 3
in Section 4.4). Nevertheless, when needed (i.e., when there are
enough CG and AA configurations to be set up), the CPU occupancy
reaches 100%.

Job Scheduling. By design, once the machine is loaded,MuMMI
frequently (every few minutes) polls the system and replaces any
finished/failed jobs immediately and, therefore, maintains high
occupancy for long periods of time. One potential bottleneck is the
initial time needed to fully load the machine. In principle, MuMMI

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

0 20 40 60 80 100
Resource Occupancy (%)

0

20

40

60

80

Pr
of

ile
 E

ve
nt

s (
%) at least 98% GPU occupancy

more than 83% of the time

GPU
CPU

Figure 5: MuMMI facilitates excellent resource

occupancy. Aggregating the profiles (computed every

10mins) over all runs shows that the GPU occupancy

was over 98% formore than 83% of the total time; CPU

occupancy is low due to the need of the simulation.

0 1 2
0

2

4

6
103

22 24

Time (hours)

N
um

be
r o

f G
PU

 Jo
bs

1000 nodes

CG Run.
AA Run.
CG Pend.
AA Pend.

0 3 6 9 12 15
Time (hours)

0

8

16

24
103 4000 nodes

Figure 6: MuMMI supports high job submission rates. We configured

our runs to submit ∽100 jobs/min. Whereas a typical 1000-node run

took only an hour to load, our scaling run (using 4000 nodes) revealed

some scheduling bottlenecks where the submitted jobs took much

longer to run. For simplicity, the figure shows GPU jobs only.

is capable of submitting several hundred jobs per minute through
Maestro [23]. In practice, however, several other parameters
affect the throughput, e.g., the I/O throughput (submit scripts are
written to disk), network bandwidth, OS limitations, and scheduler
responsiveness. For most parts of this campaign, we specifically
throttled the rate of submission to prevent overloading the job
scheduler.

Figure 6 shows the history of job scheduling for a typical
1000-node run and highlights that the jobs are placed at a steady
rate of about 100 jobs per min — an almost 3× improvement as
compared to the previous work (2040 jobs in one hour [24]), not
accounting for the fact that the jobs are now placed on specific GPUs
rather than on complete nodes. Moving to scale (the 4000-node
run), however, exposed some unanticipated bottlenecks in our
scheduling framework. The figure shows that even at the same job
submission rate, the scheduling in Flux happened in large chunks
followed by large periods of inactivity, significantly diminishing
overall throughput. Flux is currently one of the most performant
resource and job manager available [3], and our scaling run, with
its need to rapidly schedule 24,000 jobs across a resource set of
hundreds of thousands of resources (including nodes, GPUs, CPU
cores, sockets, and hardware threads) created an unprecedented
stress test to evaluate the next generation of job managers.

Strategies for Further Scaling. We are currently working
with the Flux team to devise strategies to scale the scheduling
performance required for unbundled scheduling scheme. In the
version of Flux used for this campaign, Flux’s queue manager (Q)
and resource graph matcher (R) communicate synchronously. Our
scaling run exposed this bottleneck where Q spends the bulk of
its time handling new job submissions as opposed to forwarding
jobs to R. We have since addressed this limitation by making this
communication asynchronous. More crucially, we discovered that
R essentially traverses the resource graph (modeling the resources
managed by Flux) in its entirety for each job, particularly in the
beginning when there are many vacant resources, creating “too
many choices”. We solved this problem by introducing a first-match
policy that assigns the first matching resource set to a job greedily.
Although an aggressive policy like this may not be suitable for

0 20000 40000 60000
Number of CG Frames

0

20

40

Ti
m

e
(s)

Retrieve Keys
Retrieve Values
Delete (Key, Value) Pairs

Figure 7: A Redis database (cluster of 20 nodes) facilitates

fast feedback through real-time, in-memory data

communication, as illustrated for the three types of

queries made during CG-to-Continuum feedback.

batch job scheduling, it is well-suited for a workflow like MuMMI
that contains significant high-throughput loads in its job mix.

Under Flux’s emulated environment with a resource graph
configuration similar to 4000 Summit nodes and the same job mix
(24,000 jobs with 1 GPU and 3 CPU cores each, and 1 job with
150 nodes, each with 24 cores), we measured a 670× improvement
in the performance. Nevertheless, an additional demonstration at
full scale is not possible due to unavailability of computational
resources and is, therefore, beyond the scope of this paper.

Feedback and I/O Performance. A key requirement for our
workflow was to enable fast feedback loops — ideally, each
iteration taking less than 10 min (the previous work provided an
unsatisfactory frequency of two hours). By design, the two types
of feedback have different computational challenges; therefore, we
discuss different types of performance results for the two cases.

The CG-to-Continuum feedback is expected to process tens of
thousands of CG frames in each iteration, where the processing
itself is fast (vectorized additions of small Numpy arrays). Here, the
performance is limited by the I/O throughput, i.e., identifying the
new data, loading the relevant data, and moving the processed data
out of the relevant namespace. In this case, using an in-memory
database facilitates fast I/O. We used MuMMI’s redis interface
for feedback during the scaling run (4000 nodes) and configured
the database to use 20 nodes and mapped all compute nodes

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

Generalizable Coordination of Large Multiscale Workflow: Challenges and Learnings at Scale SC ’21, November 14–19, 2021, St. Louis, MO, USA

0 1000 2000 3000 4000 5000 6000 7000
Number of AA Frames

0

20

40

60

80

100

Ti
m

e
(m

in
)

mean
mean std
frequency

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y
(%

)

Figure 8: Processing of frames for AA-to-CG feedback

requires calling external modules through system calls,

posing computational overheads. Nevertheless, through

several strategies, we successfully contain the processing

time to within about 10 minutes for over 97% of the

iterations.

randomly to these 20 Redis nodes. At this scale,MuMMI achieved a
throughput of ∽10,000 queries (retrieval of keys) and deletions
(of key-value pairs), and ∽2000 reads (retrieval of values) per
second. Figure 7 details the performance of our redis interface and
also highlights some aberrant behavior — likely due to network
congestion, a key challenge for parallel HPC applications [13, 40].
Note that one data point shows an outlier behavior (70,000 frames)
— a by-product of the intended early termination (for controlled
shutdown) of the WM in the prior run, which causes unprocessed
frames to accumulate.

In contrast, for the AA-to-CG feedback, I/O requirements are
modest as it processes an order of magnitude fewer frames per
iteration (there are fewer AA simulations, andAA frames are further
filtered for eligibility for feedback). Each processing step, however,
is expensive. Specifically, each AA frame is processed for ∽2 s
through subprocess calls to an external program — each such call
costs additional time (e.g., due to the OS needing to spawn a new
process and loading the required Python modules). Performing
hundreds to thousands of such processing is challenging at scale.
Therefore, at the workflow level, the feedback process was split into
different phases for performance optimization, and suitable process
pools and localized temporary files were used. Such improvements
allowed bounding the processing time to within the target time
limit. Figure 8 shows the distribution of time taken for each feedback
iteration with respect to the number of AA frames processed, as
well as the cumulative distribution of the number of frames. The
figure shows that more than 97% of the feedback iterations finished
within 10 minutes on average. In the few cases where more than
1600 frames had to be processed, we did not meet the target, but
the performance scaled linearly. The figure also highlights high
performance variability — a well-known concern in HPC [11, 49].

During this campaign, we used the pytaridx package to aggregate
files of similar function into archives, e.g., patches, snapshots,
analysis, and RDFs. By the end, we had compiled over 1 billion
files (1,034,232,900, to be precise) across 114,552 tar archives — a
9000× reduction in the number of files (and inodes) while retaining
efficient random access. Taridx files also scale in size and number of
constituent files — the largest in our simulation contains 6,723,600

files totaling about 455 GB. Reading from a tar file provides a
throughput of ∽575 files/s or ∽87.56 MB/s (at ∽156 KB/file).

6 CONCLUSION AND DISCUSSION

MuMMI represents a generic design ideology of coupling two scales
of interest usingML and in situ feedback [24, 37]. Here, we showcase
how this powerful idea can be realized to encompass additional
scales and models through pairwise coupling. We use a complex
scientific inquiry — an exploration of the interactions of RAS-RAF
protein complex with the PM in the context of cancer initiation
mechanism – and present the first-ever demonstration of a massive
ML-driven simulation campaign with three resolution scales.

We present technical innovations that extend the MuMMI
workflow into a generalizable and scalable framework. Using
Summit, currently the second-most-powerful machine in the
world, we demonstrate the scaling of our infrastructure — several
manifolds of improvement in all key components, including
job scheduling, data management, and throughput of ML and
feedback. In particular, achievements such as delivering an
almost-perfect resource occupancy for most of the campaign
and the management of over a billion files in total not only
highlight the tremendous capacity of our workflow but also
indicate how the boundaries of large multiscale ensembles will
be pushed in the near future. We also discuss how to use our
framework and, with forthcoming open-source release, hope for
adoption of our technology by other applications. In particular,
by following a two-part (coordination and application) model,
we have paved way to easily substitute the domain-specific
components inMuMMI, which has enabled us to utilizeMuMMI for
another application: namely, understanding biological interactions
of neuroreceptors. Our efforts are geared towards improving the
capabilities of large multiscale simulation campaigns to leverage
modern, heterogeneous computing architectures, especially in
anticipation of the upcoming Exascale machines [7, 48].

Outlook and Learnings at Scale

Whereas every technological breakthrough brings
accomplishments in the form of new capabilities and insights,
overcoming current obstacles usually exposes new types of
limitations and often breaks assumptions of HPC paradigms
and infrastructure. The process of running a three-month long
scientific campaign posed several challenges worthy of a broader
discussion.

Evolving Infrastructure Needs. MuMMI, and other similar
autonomous workflows, rely upon the ability to dynamically
co-schedule jobs. The full power of such workflows is only realized
when dynamic co-scheduling is available natively; otherwise,
workflows must still operate within static allocations requested
through the system scheduler, tying up large portions of the
machine for long periods of time. Furthermore, functioning within
independent static allocations is wasteful since each allocation must
suffer through slow startup, Given that dynamic workflows aim to
amortize this cost over long periods, facilitating new infrastructure,
in the form of either longer allocation limits and/or elastic resource
availability, should be considered broadly as an emerging need.

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

Responsible Use of Shared Resources. Nevertheless, until such
elastic resource availability becomes standard, MuMMI can still
support effective and responsible use of partial machines with little
overhead to other, nonworkflow jobs on the machine. Utilizing Flux
allows us to mitigate the impact on the native system scheduler
by encapsulating MuMMI’s many-small-tasks paradigm as a large,
singular job alike other conventional HPC jobs. This approach
not only improves the workflow’s overall job throughput, but also
reduces impact on traditional HPC jobs. Shared filesystems are
another resource that jobs usually contend for. MuMMI employs a
conscious mix of the shared filesystem and local on-node RAM
disk, which alleviates its footprint by reducing frequency of
high-bandwidth file I/O operations that may interfere with other
jobs.

Collaborative Ecosystems. Prior simulation art has primarily
been based on the notion of large MPI-based ensembles executed by
one or few expert(s). However, the shift to dynamic workflows with
various dependent or independent components instead necessitates
larger teams with a much more versatile skill set. The transition
from single-user to multidisciplinary teams breaks the current HPC
ecosystem that ties data and infrastructure access, job management,
and other facilities to a single user. Although Unix groups provide
mitigation for shared deployments and file access, the current
computing ecosystem lacks solutions that make the process of
managing such dynamic workflows seamless for multiple users.
In particular, a modality of a group ecosystem needs to emerge
that allows for groups of individuals to perform job management
(monitoring, submission, cancellation, etc.). One attractive solution
is the facilitation of “service accounts” by computing centers to
allow a set of users uniform access over jobs while maintaining the
required privacy and security measures.

Software Co-design. The increasing need for dynamic workflows
further emphasizes the value of co-designing scalable frameworks
that provide each other the drivers for innovation by pushing
the limits in new ways. By drawing increasingly complex
interconnections (e.g., of tools, technologies, and resources),
such workflows expose hidden conflicts, vulnerabilities, and/or
performance bottlenecks. As an example, our collaboration with
the Flux team provided immense value to both groups as our target
provides a concrete problem at a scale previously not exposed
to the scheduling mechanism, resulting in current and future
scaling of performance. Synergistic feedback and collaboration
between teams, especially across domains, is key to overcoming
the ever-present “next hurdle”.

The Next Leap. There is a growing need for developing persistent
workflows to seamlessly connect software stacks and data services
across allocations and even across clusters, possibly integrated with
cloud and container technologies. Persistent workflows will allow
leveraging supercomputers more effectively by decoupling compute
from the system state and dynamism of the workflow. In future
iterations of MuMMI, we envision a persistent workflow that can
coordinate variable sized allocations as resources become available
on different clusters. Exploring the shift to this paradigm is the next
technological leap, crucial to facilitate the highest utility of HPC.

ACKNOWLEDGMENTS

This work has been supported in part by the Joint Design of
Advanced Computing Solutions for Cancer (JDACS4C) program
established by the U.S. Department of Energy (DOE) and the
National Cancer Institute (NCI) of the National Institutes of Health
(NIH). We thank the entire JDACS4C Pilot 2 team, particularly the
Pilot 2 leads Fred Streitz and Dwight V. Nissley, for their support
and helpful discussion.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344, Los Alamos National
Laboratory under Contract DE-AC5206NA25396, and Oak Ridge
National Laboratory under contract DE-AC05-00OR22725. This
research used resources of the Oak Ridge Leadership Computing
Facility (OLCF), which is a DOE Office of Science User Facility
supported under Contract DE-AC05-00OR22725. For computing
time, we thank the Advanced Scientific Computing Research
Leadership Computing Challenge (ALCC) for time on Summit
and Livermore Computing (LC) and Livermore Institutional Grand
Challenge for time on Lassen. For computing support, we thank
OLCF and LC staff. For data management support, we thank Bruce
D’Amora, Lars Schneidenbach, Claudia Misale, and Carlos Costa.

IBM®, LSFTM, POWER9TM, and Spectrum ScaleTM are
trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. NVIDIA®, CUDA®,
and NVIDIA VoltaTM V100 GPUs are trademarks and/or registered
trademarks of NVIDIA Corporation in the U.S. and other countries.
Redis is a trademark of Redis Labs Ltd. Any rights therein are
reserved to Redis Labs Ltd. Any use by LLNL, LANL, ORNL, or
IBM® is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and LLNL,
LANL, ORNL, or IBM®.

LLNL Release number: LLNL-CONF-821231.

REFERENCES

[1] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C.
Smith, Berk Hess, and Erik Lindahl. 2015. GROMACS: High performance
molecular simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX 1-2 (Sept. 2015), 19–25. https://doi.org/10.1016/j.
softx.2015.06.001

[2] Brian M. Adams, Lara E. Bauman, William J. Bohnhoff, Keith R. Dalbey,
Mohamed S. Ebeida, John P. Eddy, Michael S. Eldred, Patricia D. Hough, Kenneth T.
Hu, John D. Jakeman, J. Adam Stephens, Laura P. Swiler, Dena M. Vigil, and
TimothyM.Wildey. 2009. Dakota, AMultilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty Quantification, and
Sensitivity Analysis: Version 6.0 User’s Manual. Sandia National Laboratory.

[3] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen
Herbein, Helgi I. Ingólfsson, JosephKoning, Tapasya Patki, Thomas R.W. Scogland,
Becky Springmeyer, and Michela Taufer. 2020. Flux: Overcoming scheduling
challenges for exascale workflows. Future Generation Computer Systems 110
(2020), 202–213. https://doi.org/10.1016/j.future.2020.04.006

[4] Riccardo Alessandri, Paulo C. T. Souza, Sebastian Thallmair, Manuel N. Melo,
Alex H. de Vries, and Siewert J. Marrink. 2019. Pitfalls of the Martini Model.
Journal of Chemical Theory and Computation 15, 10 (2019), 5448–5460. https:
//doi.org/10.1021/acs.jctc.9b00473 PMID: 31498621.

[5] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher,
and Steve Mock. 2004. Kepler: an extensible system for design and execution
of scientific workflows. In Proceedings of the 16th International Conference on
Scientific and Statistical Database Management, 2004. IEEE, 423–424. https:
//doi.org/10.1109/SSDM.2004.1311241

[6] Nojood A. Altwaijry, Michael Baron, David W. Wright, Peter V. Coveney,
and Andrea Townsend-Nicholson. 2017. An Ensemble-Based Protocol for the
Computational Prediction of Helix–Helix Interactions in G Protein-Coupled
Receptors using Coarse-GrainedMolecular Dynamics. Journal of Chemical Theory

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

Generalizable Coordination of Large Multiscale Workflow: Challenges and Learnings at Scale SC ’21, November 14–19, 2021, St. Louis, MO, USA

and Computation 13, 5 (2017), 2254–2270. https://doi.org/10.1021/acs.jctc.6b01246
[7] Argonne National Laboratory. 2021. Aurora. Retrieved March, 2021 from

https://www.alcf.anl.gov/aurora
[8] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan

Kumar, Lukasz Lacinski, Ryan Chard, Justin Wozniak, Ian Foster, MikeWilde, and
Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python. In 28th ACM
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC). https://doi.org/10.1145/3307681.3325400

[9] Tal Ben-Nun, Todd Gamblin, D. S. Hollman, Hari Krishnan, and Chris J. Newburn.
2020. Workflows are the New Applications: Challenges in Performance,
Portability, and Productivity. In IEEE/ACM InternationalWorkshop on Performance,
Portability and Productivity in HPC (P3HPC). 57–69. https://doi.org/10.1109/
P3HPC51967.2020.00011

[10] Robert B. Best, Xiao Zhu, Jihyun Shim, Pedro E. M. Lopes, Jeetain Mittal, Michael
Feig, and Alexander D. MacKerell. 2012. Optimization of the Additive CHARMM
All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Φ,
Ψ and Side-Chain 𝜒1 and 𝜒2 Dihedral Angles. Journal of Chemical Theory and
Computation 8, 9 (2012), 3257–3273. https://doi.org/10.1021/ct300400x PMID:
23341755.

[11] Abhinav Bhatele, Jayaraman J. Thiagarajan, Taylor Groves, Rushil Anirudh,
Staci A. Smith, Brandon Cook, and David K. Lowenthal. 2020. The Case of
Performance Variability on Dragonfly-based Systems. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 896–905. https://doi.org/
10.1109/IPDPS47924.2020.00096

[12] Harsh Bhatia, Timothy S. Carpenter, Helgi I. Ingólfsson, Gautham Dharuman,
Piyush Karande, Shusen Liu, Tomas Oppelstrup, Chris Neale, Felice C. Lightstone,
Brian Van Essen, James N. Glosli, and Peer-Timo Bremer. 2021. Machine Learning
Based Dynamic-Importance Sampling for Adaptive Multiscale Simulations.
Nature Machine Intelligence 3 (2021), 401–409. https://doi.org/10.1038/s42256-
021-00327-w

[13] Harsh Bhatia, Nikhil Jain, Abhinav Bhatele, Yarden Livnat, Jens Domke, Valerio
Pascucci, and Peer-Timo Bremer. 2018. Interactive Investigation of Traffic
Congestion on Fat-Tree Networks Using TreeScope. Computer Graphics Forum
37, 3 (2018), 561–572. https://doi.org/10.1111/cgf.13442

[14] Harsh Bhatia and Joseph Y. Moon. 2020. Dynamic-Importance Sampling. https:
//github.com/LLNL/dynim.

[15] J. Borgdorff, M. Ben Belgacem, C. Bona-Casas, L. Fazendeiro, D. Groen, O. Hoenen,
A. Mizeranschi, J.L. Suter, D. Coster, P.V. Coveney, W. Dubitzky, A.G. Hoekstra, P.
Strand, and B. Chopard. 2014. Performance of distributed multiscale simulations.
Phil. Trans. R. Soc. A 372 (2014), 20130407. https://doi.org/10.1098/rsta.2013.0407

[16] Hans-Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam Mehl,
Klaudius Scheufele, Alexander Shukaev, and BenjaminUekermann. 2016. preCICE
– A fully parallel library for multi-physics surface coupling. Computers & Fluids
141 (2016), 250–258. https://doi.org/10.1016/j.compfluid.2016.04.003

[17] Lorenzo Casalino, Abigail Dommer, Zied Gaieb, Emilia P. Barros, Terra Sztain,
Surl-Hee Ahn, Anda Trifan, Alexander Brace, Anthony Bogetti, Heng Ma,
Hyungro Lee, Matteo Turilli, Syma Khalid, Lillian Chong, Carlos Simmerling,
David J. Hardy, Julio D. C. Maia, James C. Phillips, Thorsten Kurth, Abraham
Stern, Lei Huang, John McCalpin, Mahidhar Tatineni, Tom Gibbs, John E. Stone,
Shantenu Jha, Arvind Ramanathan, and Rommie E. Amaro. 2020. AI-Driven
Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics.
bioRxiv (2020). https://doi.org/10.1101/2020.11.19.390187

[18] David A. Case, Thomas E. Cheatham III, Tom Darden, Holger Gohlke, Ray Luo,
Kenneth M. Merz Jr., Alexey Onufriev, Carlos Simmerling, Bing Wang, and
Robert J. Woods. 2005. The Amber biomolecular simulation programs. Journal
of Computational Chemistry 26, 16 (2005), 1668–1688. https://doi.org/10.1002/jcc.
20290

[19] Bastien Chopard, Joris Borgdorff, and Alfons Hoekstra. 2014. A framework for
multi-scale modelling. Philosophical Transactions of The Royal Society A 372
(2014), 20130378. https://doi.org/10.1098/rsta.2013.0378

[20] Anthony Craig, Sophie Valcke, and Laure Coquart. 2017. Development
and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0.
Geoscientific Model Development 10, 9 (2017), 3297–3308. https://doi.org/10.
5194/gmd-10-3297-2017

[21] Tamara L. Dahlgren, David Domyancic, Scott Brandon, Todd Gamblin, John
Gyllenhaal, Rao Nimmakayala, and Richard Klein. 2015. Poster: Scaling
uncertainty quantification studies to millions of jobs. In Proceedings of the
27th ACM/IEEE International Conference for High Performance Computing and
Communications Conference (SC).

[22] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science
Automation. Future Generation Computer Systems 46 (2015), 17–35. https:
//doi.org/10.1016/j.future.2014.10.008

[23] Francesco Di Natale. 2017. Maestro Workflow Conductor. https://github.com/
LLNL/maestrowf.

[24] Francesco Di Natale, Harsh Bhatia, Timothy S. Carpenter, Chris Neale,
Sara Kokkila Schumacher, Tomas Oppelstrup, Liam Stanton, Xiaohua Zhang, Shiv

Sundram, Thomas R. W. Scogland, Gautham Dharuman, Michael P. Surh, Yue
Yang, Claudia Misale, Lars Schneidenbach, Carlos Costa, Changhoan Kim, Bruce
D’Amora, Sandrasegaram Gnanakaran, Dwight V. Nissley, Fred Streitz, Felice C.
Lightstone, Peer-Timo Bremer, James N. Glosli, and Helgi I. Ingólfsson. 2019. A
Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling
RAS Initiation Pathway for Cancer. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’19). ACM,
New York, NY, USA, Article 57, 16 pages. https://doi.org/10.1145/3295500.3356197

[25] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio,
Jean-Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand
Braunschweig, Franck Cappello, Barbara Chapman, Xuebin Chi, Alok Choudhary,
Sudip Dosanjh, Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert
Harrison, Mark Hereld, Michael Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin,
Yutaka Ishikawa, Fred Johnson, Sanjay Kale, Richard Kenway, David Keyes,
Bill Kramer, Jesus Labarta, Alain Lichnewsky, Thomas Lippert, Bob Lucas,
Barney Maccabe, Satoshi Matsuoka, Paul Messina, Peter Michielse, Bernd Mohr,
Matthias S. Mueller, Wolfgang E. Nagel, Hiroshi Nakashima, Michael E Papka,
Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner, Marc Snir, Thomas
Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto, William Tang,
John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero, Aad van der Steen,
Jeffrey Vetter, Peg Williams, Robert Wisniewski, and Kathy Yelick. 2011. The
International Exascale Software Project roadmap. The International Journal of
High Performance Computing Applications 25, 1 (2011), 3–60. https://doi.org/10.
1177/1094342010391989

[26] Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel
Staffelbach, Thierry Morel, and Laurent Gicquel. 2015. Analysis of high
performance conjugate heat transfer with the OpenPALM coupler. Computational
Science & Discovery 8, 1 (July 2015), 015003. https://doi.org/10.1088/1749-
4699/8/1/015003

[27] Ernest J. Friedman-Hill, Edward L. Hoffman, Marcus J. Gibson, Robert L. Clay, and
Kevin H. Olson. 2015. Incorporating Workflow for V&V/UQ in the Sandia Analysis
Workbench. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States).

[28] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam
Moody, Bronis R. de Supinski, and Scott Futral. 2015. The Spack PackageManager:
Bringing Order to HPC Software Chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Austin, Texas) (SC ’15). ACM, New York, NY, USA, Article 40, 12 pages. https:
//doi.org/10.1145/2807591.2807623

[29] ToddGamblin and The Spack Team. 2020. Spack. https://github.com/spack/spack.
[30] James N. Glosli, David F. Richards, Kyle J. Caspersen, Robert E. Rudd, John A.

Gunnels, and Frederick H. Streitz. 2007. Extending Stability Beyond CPU
Millennium: AMicron-scale Atomistic Simulation of Kelvin-Helmholtz Instability.
In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (Reno,
Nevada). ACM, New York, NY, USA, Article 58, 11 pages. https://doi.org/10.
1145/1362622.1362700

[31] John M.A. Grime, James F. Dama, Barbie K. Ganser-Pornillos, Cora L. Woodward,
Grant J. Jensen, Mark Yeager, and Gregory A. Voth. 2016. Coarse-grained
simulation reveals key features of HIV-1 capsid self-assembly. Nature
Communications 7 (2016), 11568. https://doi.org/10.1038/ncomms11568

[32] Alfons Hoekstra, Bastien Chopard, and Peter Coveney. 2014. Multiscale modelling
and simulation: A position paper. Philosophical Transactions of The Royal Society
A 372 (2014), 20130377. https://doi.org/10.1098/rsta.2013.0377

[33] Tsuyoshi Ichimura, Kohei Fujita, Takuma Yamaguchi, Akira Naruse, Jack C.
Wells, Thomas C. Schulthess, Tjerk P. Straatsma, Christopher J. Zimmer, Maxime
Martinasso, Kengo Nakajima, Muneo Hori, and Lalith Maddegedara. 2018. A Fast
Scalable Implicit Solver for Nonlinear Time-evolution Earthquake City Problem
on Low-ordered Unstructured Finite Elements with Artificial Intelligence and
Transprecision Computing. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC ’18). IEEE Press,
Piscataway, NJ, USA, 627–637. https://doi.org/10.1109/SC.2018.00052

[34] Helgi I. Ingólfsson, Harsh Bhatia, Talia Zeppelin, W. F. Drew Bennett, Kristy A.
Carpenter, Pin-Chia Hsu, Gautham Dharuman, Peer-Timo Bremer, Birgit Schiøtt,
Felice C. Lightstone, and Timothy S. Carpenter. 2020. Capturing Biologically
Complex Tissue-Specific Membranes at Different Levels of Compositional
Complexity. The Journal of Physical Chemistry B 124, 36 (2020), 7819–7829.
https://doi.org/10.1021/acs.jpcb.0c03368 PMID: 32790367.

[35] Helgi I. Ingólfsson, Timothy S. Carpenter, Harsh Bhatia, Peer-Timo Bremer,
Siewert J. Marrink, and Felice C. Lightstone. 2017. Computational Lipidomics
of the Neuronal Plasma Membrane. Biophysical Journal 113, 10 (Nov. 2017),
2271–2280. https://doi.org/10.1016/j.bpj.2017.10.017

[36] Helgi I. Ingólfsson, Cesar A. Lopez, Jaakko J. Uusitalo, Djurre H. de Jong,
Srinivasa M. Gopal, Xavier Periole, and Siewert J. Marrink. 2014. The power of
coarse graining in biomolecular simulations. WIREs Computational Molecular
Science 4, 3 (2014), 225–248. https://doi.org/10.1002/wcms.1169

[37] Helgi I. Ingólfsson, Chris Neale, Timothy S. Carpenter, Rebika Shrestha, Cesar A
López, Timothy H. Tran, Tomas Oppelstrup, Harsh Bhatia, Liam G. Stanton,
Xiaohua Zhang, Shiv Sundram, Francesco Di Natale, Animesh Agarwal, Gautham

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

Dharuman, Sara I. L. Kokkila Schumacher, Thomas Turbyville, Gulcin Gulten,
Que N. Van, Debanjan Goswami, Frantz Jean-Francios, Constance Agamasu,
De Chen, Jeevapani J. Hettige, Timothy Travers, Sumantra Sarkar, Michael P.
Surh, Yue Yang, Adam Moody, Shusen Liu, Brian C. Van Essen, Arthur F. Voter,
Arvind Ramanathan, Nicolas W. Hengartner, Dhirendra K. Simanshu, Andrew G.
Stephen, Peer-Timo Bremer, S. Gnanakaran, James N. Glosli, Felice C. Lightstone,
Frank McCormick, Dwight V. Nissley, and Frederick H. Streitz. 2020. Machine
Learning-driven Multiscale Modeling Reveals Lipid-Dependent Dynamics of RAS
Signaling Proteins. (2020). https://doi.org/10.21203/rs.3.rs-50842/v1 Preprint.

[38] Sam Ade Jacobs, Tim Moon, Kevin McLoughlin, Derek Jones, David Hysom,
Dong H. Ahn, John Gyllenhaal, Pythagoras Watson, Felice C. Lightstone,
Jonathan E. Allen, Ian Karlin, and Brian Van Essen. 2020. Enabling Rapid
COVID-19 Small Molecule Drug Design Through Scalable Deep Learning of
Generative Models. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’20). ACM, New
York, NY, USA. https://doi.org/10.1177/10943420211010930 Finalist for the 2020
Gordon Bell Special Prize.

[39] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui Qu, Michael
Kocher, Miriam Brafman, Guido Petretto, Gian-Marco Rignanese, Geoffroy
Hautier, Daniel Gunter, and Kristin A. Persson. 2015. FireWorks: a dynamic
workflow system designed for high-throughput applications. Concurrency
and Computation: Practice and Experience 27, 17 (2015), 5037–5059. https:
//doi.org/10.1002/cpe.3505 CPE-14-0307.R2.

[40] Nikhil Jain, Abhinav Bhatele, Sam White, Todd Gamblin, and Laxmikant V. Kale.
2016. Evaluating HPC Networks via Simulation of Parallel Workloads. In SC
’16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 154–165. https://doi.org/10.1109/SC.2016.13

[41] Hervé Jégou, Matthijs Douze, Jeff Johnson, and Lucas Hosseini. [n.d.]. FAISS.
https://github.com/facebookresearch/faiss.

[42] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data (2019). https://doi.org/10.1109/
TBDATA.2019.2921572

[43] Dirk Kessler, Michael Gmachl, Andreas Mantoulidis, Laetitia J. Martin, Andreas
Zoephel, Moriz Mayer, Andreas Gollner, David Covini, Silke Fischer, Thomas
Gerstberger, Teresa Gmaschitz, Craig Goodwin, Peter Greb, Daniela Häring,
Wolfgang Hela, Johann Hoffmann, Jale Karolyi-Oezguer, Petr Knesl, Stefan
Kornigg, Manfred Koegl, Roland Kousek, Lyne Lamarre, Franziska Moser, Silvia
Munico-Martinez, Christoph Peinsipp, Jason Phan, Jörg Rinnenthal, Jiqing Sai,
Christian Salamon, Yvonne Scherbantin, Katharina Schipany, Renate Schnitzer,
Andreas Schrenk, Bernadette Sharps, Gabriella Siszler, Qi Sun, Alex Waterson,
Bernhard Wolkerstorfer, Markus Zeeb, Mark Pearson, Stephen W. Fesik, and
Darryl B. McConnell. 2019. Drugging an undruggable pocket on KRAS.
Proceedings of the National Academy of Sciences 116, 32 (2019), 15823–15829.
https://doi.org/10.1073/pnas.1904529116

[44] Kai J. Kohlhoff, Diwakar Shukla, Morgan Lawrenz, Gregory R. Bowman, David E.
Konerding, Dan Belov, Russ B. Altman, and Vijay S. Pande. 2014. Cloud-based
simulations on Google Exacycle reveal ligand modulation of GPCR activation
pathways. Nature Chemistry 6, 1 (2014), 15–21. https://doi.org/10.1038/nchem.
1821

[45] V.V. Krzhizhanovskaya, D. Groen, B. Bozak, and A.G. Hoekstra. 2015. Multiscale
Modelling and Simulation Workshop: 12 Years of Inspiration. Procedia
Computer Science 51 (2015), 1082–1087. https://doi.org/10.1016/j.procs.2015.
05.268 International Conference On Computational Science, ICCS 2015.

[46] Redis Labs. 2018. Redis. https://redis.io.
[47] Lawrence Livermore National Laboratory. 2019. Lassen. Retrieved March, 2021

from https://hpc.llnl.gov/hardware/platforms/lassen
[48] Lawrence Livermore National Laboratory. 2021. El Capitan. https:

//www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-
fastest-supercomputer

[49] Boyang Li, Sudheer Chunduri, Kevin Harms, Yuping Fan, and Zhiling Lan. 2019.
The Effect of System Utilization on Application Performance Variability. In
Proceedings of the 9th International Workshop on Runtime and Operating Systems
for Supercomputers (Phoenix, AZ, USA) (ROSS ’19). Association for Computing
Machinery, New York, NY, USA, 11–18. https://doi.org/10.1145/3322789.3328743

[50] Umberto M.B. Marconi and Pedro Tarazona. 1999. Dynamic density functional
theory of fluids. The Journal of chemical physics 110, 16 (1999), 8032–8044.
https://doi.org/10.1063/1.478705

[51] Siewert J. Marrink, H. Jelger Risselada, Serge Yefimov, D. Peter Tieleman, and
Alex H. de Vries. 2007. The MARTINI Force Field: Coarse Grained Model for
Biomolecular Simulations. The Journal of Physical Chemistry B 111, 27 (July 2007),
7812–7824. https://doi.org/10.1021/jp071097f

[52] Manuel N. Melo, Clément Arnarez, Hendrik Sikkema, Neeraj Kumar, Martin
Walko, Herman J. C. Berendsen, Armagan Kocer, Siewert J. Marrink, and Helgi I.
Ingólfsson. 2017. High-Throughput Simulations Reveal Membrane-Mediated
Effects of Alcohols on MscL Gating. Journal of the American Chemical Society
139, 7 (Feb. 2017), 2664–2671. https://doi.org/10.1021/jacs.6b11091

[53] Misako Nagasaka, Yiwei Li, Ammar Sukari, Sai-Hong Ignatius Ou,
Mohammed Najeeb Al-Hallak, and Asfar S. Azmi. 2020. KRAS G12C Game

of Thrones, which direct KRAS inhibitor will claim the iron throne? Cancer
Treatment Reviews 84 (2020), 101974. https://doi.org/10.1016/j.ctrv.2020.101974

[54] Oak Ridge National Laboratory. 2019. Summit. Retrieved March, 2021 from
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit

[55] Alexander J. Pak, John M. A. Grime, Prabuddha Sengupta, Antony K. Chen,
Aleksander E.P. Durumeric, Anand Srivastava, Mark Yeager, John A.G. Briggs,
Jennifer Lippincott-Schwartz, and Gregory A. Voth. 2017. Immature HIV-1
lattice assembly dynamics are regulated by scaffolding from nucleic acid and
the plasma membrane. Proceddings of the National Academy of Sciences 114, 47
(2017), E10056–E10065. https://doi.org/10.1073/pnas.1706600114

[56] Albert C. Pan, Daniel Jacobson, Konstantin Yatsenko, Duluxan Sritharan,
Thomas M. Weinreich, and David E. Shaw. 2019. Atomic-level characterization
of protein–protein association. Proceedings of the National Academy of Sciences
116, 10 (2019), 4244–4249. https://doi.org/10.1073/pnas.1815431116

[57] J. Luc Peterson, Ben Bay, Joe Koning, Peter Robinson, Jessica Semler, Jeremy
White, Rushil Anirudh, Kevin Athey, Peer-Timo Bremer, Francesco Di Natale,
David Fox, Jim A. Gaffney, Sam A. Jacobs, Bogdan Kustowski Bhavya Kailkhura,
Steven Langer, Brian Spears, Jayaraman J. Thiagarajan, Brian Van Essen,
and Jae-Seung Yeom. 2019. Merlin: Enabling Machine Learning-Ready HPC
Ensembles. https://arxiv.org/abs/1912.02892

[58] Jayson L. Peterson, Kelli D. Humbird, John E. Field, Scott T. Brandon, Steve H.
Langer, Ryan C. Nora, Brian K. Spears, and Paul T. Springer. 2017. Zonal Flow
Generation in Inertial Confinement Fusion Implosions. Physics of Plasmas 24, 3
(2017), 032702. https://doi.org/10.1063/1.4977912

[59] Ian A. Prior, Fiona E. Hood, and James L. Hartley. 2020. The Frequency of
Ras Mutations in Cancer. Cancer Research 80, 14 (2020), 2969–2974. https:
//doi.org/10.1158/0008-5472.CAN-19-3682

[60] Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin M. Müller,
Kurt Kremer, and Markus Deserno. 2007. Aggregation and vesiculation of
membrane proteins by curvature-mediated interactions. Nature 447, 7143 (2007),
461. https://doi.org/10.1038/nature05840

[61] Rob Farber. 2020. Workflow Technologies impact SC20 Gorden Bell
COVID-19 Award Winner and Two of the Three Finalists. Retrieved May,
2021 from https://www.exascaleproject.org/workflow-technologies-impact-sc20-
gordon-bell-covid-19-award-winner-and-two-of-the-three-finalists/

[62] Romelia Salomon-Ferrer, Andreas W. Götz, Duncan Poole, Scott Le Grand, and
Ross C.Walker. 2013. RoutineMicrosecondMolecular Dynamics Simulationswith
AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical
Theory and Computation 9, 9 (2013), 3878–3888. https://doi.org/10.1021/ct400314y
PMID: 26592383.

[63] Marissa G. Saunders and Gregory A. Voth. 2013. Coarse-Graining Methods
for Computational Biology. Annual Review of Biophysics 42, 1 (2013), 73–93.
https://doi.org/10.1146/annurev-biophys-083012-130348

[64] David E. Shaw, Ron O. Dror, John K. Salmon, J.P. Grossman, Kenneth M.
Mackenzie, Joseph A. Bank, Cliff Young, Martin M. Deneroff, Brannon Batson,
Kevin J. Bowers, Edmond Chow, Michael P. Eastwood, Douglas J. Ierardi, John L.
Klepeis, Jeffrey S. Kuskin, Richard H. Larson, Kresten Lindorff-Larsen, Paul
Maragakis, Mark A. Moraes, Stefano Piana, Yibing Shan, and Brian Towles. 2009.
Millisecond-scale Molecular Dynamics Simulations on Anton. In Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis
(Portland, Oregon) (SC ’09). New York, NY, USA, 1–11. https://doi.org/10.1145/
1654059.1654126

[65] Michael R. Shirts, Christoph Klein, Jason M. Swails, Jian Yin, Michael K. Gilson,
David L. Mobley, David A. Case, and Ellen D. Zhong. 2017. Lessons learned
from comparing molecular dynamics engines on the SAMPL5 dataset. Journal of
Computer-Aided Molecular Design 31, 1 (2017), 147–161. https://doi.org/10.1007/
s10822-016-9977-1

[66] Dhirendra K. Simanshu, Dwight V. Nissley, and Frank McCormick. 2017. RAS
Proteins and Their Regulators in Human Disease. Cell 170, 1 (June 2017), 17–33.
https://doi.org/10.1016/j.cell.2017.06.009

[67] James Smith. 2017. IBM Spectrum LSF. IBM Corporation. https://www.ibm.com/
support/knowledgecenter/en/SSWRJV_10.1.0/lsf_welcome/lsf_welcome.html

[68] Frederick H Streitz, James N Glosli, and Mehul V Patel. 2006. Beyond finite-size
scaling in solidification simulations. Physical Review Letters 96, 22 (2006), 225701.
https://doi.org/10.1103/PhysRevLett.96.225701

[69] Frederick H. Streitz, James N. Glosli, Mehul V. Patel, Bor Chan, Robert K. Yates,
Bronis R. de Supinski, James Sexton, and John A. Gunnels. 2005. 100+ TFlop
Solidification Simulations on BlueGene/L. In Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing (Seattle, Washington) (SC ’05). ACM, New York,
NY, USA.

[70] TOP500. 2020. TOP500 Supercomputer Sites | November 2020. Retrieved March,
2021 from https://www.top500.org/lists/top500/2020/11/

[71] Timothy Travers, Cesar A. López, Que N. Van, Chris Neale, Marco Tonelli,
Andrew G. Stephen, and Sandrasegaram Gnanakaran. 2018. Molecular
recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich
domain. Scientific Reports 8, 1 (May 2018), 8461. https://doi.org/10.1038/s41598-
018-26832-4

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

Generalizable Coordination of Large Multiscale Workflow: Challenges and Learnings at Scale SC ’21, November 14–19, 2021, St. Louis, MO, USA

[72] Vincent A. Voelz, Marcus Jäger, Shuhuai Yao, Yujie Chen, Li Zhu, Steven A.
Waldauer, Gregory R. Bowman, Mark Friedrichs, Olgica Bakajin, Lisa J. Lapidus,
Shimon Weiss, and Vijay S. Pande. 2012. Slow Unfolded-State Structuring in
Acyl-CoA Binding Protein Folding Revealed by Simulation and Experiment.
Journal of the American Chemical Society 134, 30 (2012), 12565–12577. https:
//doi.org/10.1021/ja302528z

[73] Gregory A. Voth. 2017. A Multiscale Description of Biomolecular Active Matter:
The Chemistry Underlying Many Life Processes. Accounts of Chemical Research
50, 3 (March 2017), 594–598. https://doi.org/10.1021/acs.accounts.6b00572

[74] Tsjerk A. Wassenaar, Helgi I. Ingólfsson, Rainer A. Böckmann, D. Peter Tieleman,
and Siewert J. Marrink. 2015. Computational Lipidomics with insane : A Versatile
Tool for Generating Custom Membranes for Molecular Simulations. Journal of
Chemical Theory and Computation 11, 5 (May 2015), 2144–2155. https://doi.org/
10.1021/acs.jctc.5b00209

[75] Tsjerk A. Wassenaar, Kristyna Pluhackova, Rainer A. Böckmann, Siewert J.
Marrink, and D. Peter Tieleman. 2014. Going Backward: A Flexible Geometric
Approach to Reverse Transformation from Coarse Grained to Atomistic Models.

Journal of Chemical Theory and Computation 10, 2 (2014), 676–690. https:
//doi.org/10.1021/ct400617g PMID: 26580045.

[76] Tsjerk A. Wassenaar, Kristyna Pluhackova, Anastassiia Moussatova, Durba
Sengupta, Siewert J. Marrink, D. Peter Tieleman, and Rainer A. Böckmann. 2015.
High-Throughput Simulations of Dimer and Trimer Assembly of Membrane
Proteins. The DAFT Approach. Journal of Chemical Theory and Computation 11,
5 (May 2015), 2278–2291. https://doi.org/10.1021/ct5010092

[77] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2002. SLURM: Simple
Linux Utility for Resource Management. In In Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003.
Springer-Verlag, 44–60. https://doi.org/10.1007/10968987_3

[78] Xiaohua Zhang, Shiv Sundram, Tomas Oppelstrup, Sara I. L. Kokkila-Schumacher,
Timothy S. Carpenter, Helgi I. Ingólfsson, FrederickH. Streitz, Felice C. Lightstone,
and James N. Glosli. 2020. ddcMD: A fully GPU-accelerated molecular dynamics
program for the Martini force field. The Journal of Chemical Physics 153, 4 (2020),
045103. https://doi.org/10.1063/5.0014500

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We tested ddcMD (version 2020.1) molecular dynamics code on
the Summit supercomputer (Oak Ridge National Lab) using Spec-
trumMPI v10.3.0.1-20190611-flux and NVIDIA CUDA library ver-
sion 10.1.105. were used. Performance was tested using a repre-
sentative system and subsequently verified during the simulation
campaign (see Figure 4, graph labeled “CG”).

To test AMBER 2018, we computed the simulation time based
on the output of all-atomistic simulations during our simulation
campaigns, and the value representative of runs using the setup in
the “Environmental Setup” section of these appendices. Output rate
was determined by post-processing the timestamp of simulation
output and computing a framerate. The results are presented in
Figure 4 in the graph labeled “AA”.

Testing GridSim2D was done on Summit prior to the simulation
campaign using the environment described in the “Experimental
Setup” on a representative system. We independently verified our
expected performance during our campaign on Summit and present
the performance seen during our demonstrated campaign (see Fig-
ure 4, graph labeled “Continuum”).

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/LLNL/maestrowf
Artifact name: Maestro Workflow Conductor
Citation of artifact: Di Natale, Francesco. Maestro

Workflow Conductor. Computer software. Vers. 00.
USDOE National Nuclear Security Administration
(NNSA). 1 Jun. 2017. Web.

↩→

↩→

↩→

Persistent ID: https://github.com/LLNL/dynim
Artifact name: DynIm
Citation of artifact: Bhatia, Carpenter, Inglfsson,

Dharuman, Karande, Liu, Oppelstrup, Neale,
Lightstone, Van Essen, Glosli, and Bremer. 2021.
Machine Learning Based Dynamic-Importance
Sampling for Adaptive Multiscale Simulations.
Nature Machine Intelligence (2021). In Press.

↩→

↩→

↩→

↩→

↩→

Persistent ID:

https://github.com/XiaohuaZhangLLNL/mdanalysis↩→

Artifact name: MDAnalysis (LLNL modified)
Citation of artifact: N/A

Persistent ID: https://github.com/LLNL/ddcMD
Artifact name: ddcMD

Citation of artifact: Zhang, Sundram, Oppelstrup,
Kokkila-Schumacher, Carpenter, Inglfsson,
Streitz, Lightstone, and Glosli. 2020. ddcMD: A
fully GPU-accelerated molecular dynamics program
for the Martini force field. The Journal of
Chemical Physics 153, 4 (2020), 045103.
https://doi.org/10.1063/5.001450014

↩→

↩→

↩→

↩→

↩→

↩→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Summit, NVIDIA Volta v100, IBM
POWER9 CPUs, GPFS

Operating systems and versions: Red Hat Enterprise Linux (RHEL)
version 7.4

Compilers and versions: Python 3.7.7, gcc v7.4.0

Applications and versions: AMBER 2018, GROMACS 2019.06,
MDAnalysis v0.16.2, ddcMD v2019.1, maestrowf v1.1.9dev0, DSSP
v3.1.4, parmed v3.2.0, Redis v5.0.3, GridSim2D v2020-12-22-c3-final,
pytaridx, flux-core v0.20.0, flux-sched v0.9.0, Martinize 2.6.3, insane
(doi:10.1021/acs.jctc.5b00209)

Libraries and versions: boost v1.73.0, Theano v1.0.2, faiss v1.6.3,
SpectrumMPI v10.3.0.1-20190611-flux, CUDA v10.1.105

Key algorithms: N/A

Input datasets and versions: N/A

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 03,2023 at 23:29:24 UTC from IEEE Xplore. Restrictions apply.

