
D
R
A
FT

Vision and Plan for a Next Generation Resource Manager

LLNL-TR-636552-DRAFT

Dong H. Ahn, ahn1@llnl.gov
Jim Garlick, garlick@llnl.gov

Mark Grondona, mgrondona@llnl.gov
Don Lipari, lipari@llnl.gov

May 14, 2013

1 Overview

Resource Management (RM) software is critical for High Performance Computing (HPC). It is the
centerpiece that allows efficient execution of HPC applications while providing an HPC center with
the main means to maximize the utilization of its computing resources. However, several growing
trends make even the best-in-breed RM software largely ineffective. As numbers and types of
compute cores of HPC systems continue to grow, key RM challenges associated only with today’s
capability-class machines are becoming increasingly pervasive for all computing resources including
commodity Linux clusters. The challenges include having to provide extreme scalability, low noise,
fault tolerance, and heterogeneity management while under a strict power budget. ned-review: Cita-

tion needed. The
shortcomings identi-
fied in this section
form the core justifi-
cation for why NGRM
is needed, so you
should be prepared to
back them up with
references.

In addition, greater difficulties in code development on larger systems have begun to impose far
more complex requirements on the RM. For example, without adequate RM support, debugging,
tuning, testing and verification of the applications have become too difficult and time-consuming
for end-users. The next-generation code development environments require the RM to provide
effective mechanisms to support the reproducible results of program execution, to provide accurate
correlations between user-level errors and system-level events, and to integrate and accelerate a rich
set of scalable tools.

Further, a greater interplay among various classes of clusters across the entire computing facility
makes the current paradigm of single-cluster scheduling largely ineffective. An application run-
ning on a compute cluster heavily utilizes site-wide shared resources such as I/O and visualization
clusters. Thus, avoiding any significant site-wide bottleneck requires the RM to schedule the job
to all dependent resources together. In short, without the RM that can effectively address all of
these challenges, it has become apparent that HPC centers will suffer a significant loss in both user
productivity and efficient uses of next-generation computing resources. ned-review: Ci-

tation needed. As
above, we need
more than anecdotal
evidence that Slurm
can’t meet future
requirements.

Slurm [33] is arguably the best-in-breed, open-sourced RM designed for commodity Linux clus-
ters. Livermore Computing (LC) at Lawrence Livermore National Laboratory (LLNL) designed and
led its implementation in 2002 and since then has facilitated broad adoption outside of LLNL. Slurm’s
original design was for a moderate-size Linux cluster with O (2K) compute nodes connected in a
single interconnect domain and MPICH-based, bulk-synchronous applications. In the last decade,
beginning with multi-core support added by Hewlett-Packard [12], Slurm has been modified to meet
emerging challenges that stray outside its core design. For example, recently it has been adapted to
act as a scheduling and job submission layer on top of proprietary RM software on IBM Blue Gene
and Cray systems, to support new run-times such as OpenMPI and MapReduce [14], to implement
hierarchical communication to increase scalability, and to be tied into a Moab [7] grid. These adap-
tations have accrued without fundamentally changing the core paradigm and design of Slurm, which
is that of a monolithic, centralized controller with compute nodes as the main, scheduled resource
type. As a result the Slurm implementation of these add-ons is less functional and effective than it

1

D
R
A
FT

could be with a redesign, and the Slurm code base grows increasingly unmaintainable, burdened as
it is with such after-thoughts.

Our response to this critical need is the Next Generation Resource Manager (NGRM), an RM
software framework that can solve the key emerging challenges in a simple, extensible, distributed and
autonomous fashion. It aims at managing the whole center as one common pool of diverse resources.
Hence, scheduling decisions will be far more efficient as well as flexible to accommodate emerging
constraints such as a strict power bound. Further, NGRM integrates system monitoring, system
administration, lightweight virtualization, and distributed tool communication capabilities that are
currently provided by disjoint and often overlapping software. Integration of these facilities within
the common framework designed from the ground up for scalability, security, and fault tolerance
will result in a more efficient and capable system. ned-review: What

about the security
model–should it
be its own thrust
area? It seems to
me a robust security
model will need to
be incorporated from
the ground up, so
it should be one of
the first things we
work on. jg: Security
model is developed in
comms thrust.

We realize that NGRM represents a paradigm shift for HPC resource management, and yet we
must address a wide range of challenges in relatively short order with limited resources. Thus, we
organize our project plan around four research and development thrust areas and seek to advance
them systematically. These areas are called: Communications Framework, Resource Management,
Monitoring, and Workload Runtime And Placement. They are relatively independent but can sig-
nificantly build on the strength of one another through well-known interfaces and common design
and development principles. Thus, reaching all major milestones of these thrust areas will represent
the completion of the first round of NGRM development.

Overall, NGRM will significantly improve operational efficiency for scientific application devel-
opment and execution, and further for computing resources of the entire HPC center. It will also
provide a foundation for further extension and customization, allowing agile responses to site-specific
scheduling issues. Perhaps more importantly, NGRM positions us to cope with a blend of interre-
lated, diverse extreme-scale computing resources, the landscape of high-end HPC centers in just a
few years down the road.

The rest of the paper is organized as follows. Section 2 presents NGRM’s vision and its new
capabilities in more detail. In Section 3, we discuss the key software design challenges and the con-
ceptual models that embody the new paradigm while addressing these design challenges. Section 4
then describes our software design and also highlights the four research and development thrust ar-
eas and their relations. The following sections then go over and detail each of these areas including
its work breakdown structure (WBS) and associated work items. Finally, Section ?? defines our
schedules for milestones and deliverables.

2 Vision and New Capabilities

The vision of NGRM is to create a scalable RM software system that drastically improves oper-
ational efficiency and user productivity for workloads on capacity-class compute systems. With a
trend towards ever-growing numbers and types of compute cores, however, this system class has
been subject to the challenges that today’s capability-class machines have been facing. These chal-
lenges include having to provide extreme scalability, low noise, fault tolerance, and heterogeneity
management while under a strict power budget. Worse, the workloads themselves are also becoming
increasingly diverse, dynamic, and large. Thus, fully realizing our vision through these challenges
requires a paradigm shift in how the RM should manage, model, schedule, and allocate its resources.

In the new paradigm, the RM must be capable of imposing highly complex resource bounds to
guarantee the highest operational efficiency at any level across the computing facility, while at the
same time enabling most efficient execution and scheduling of the workloads within these bounds.
Thus, the RM must manage the entire facility as one common pool of resources. The ability to see a
broader spectrum of resources and their various constraints can then lead to most efficient scheduling
strategies and execution environments. Further, the same ability will ease efforts to diagnose errors
for both end users and support staff by associating jobs with other facility-wide events. The new
paradigm also demands that the RM model various types of resources and their relationships beyond
the traditional resource representation: i.e., a simple collection of compute nodes. The rich resource
model will allow the RM to allocate computing resources tailored to the disparate limiting factors of

2

D
R
A
FT

our applications: e.g., an application may be compute-bound while others are I/O-bound or power-
bound. Under the new paradigm, the resource allocations must also be elastic. An application may
have different phases with disparate performance-limiting factors; it must be able to grow and shrink
its resource allocation dynamically. The global resource view, rich resource model, and elasticity
represent the fundamental characteristics of the new resource management paradigm.

Further, the new paradigm must provide a central framework to integrate other relevant software.
The software components should include system monitoring and administration, lightweight virtu-
alization, and scalable tool communication. The integration will facilitate a higher level of leverage
among these essential computing elements, and this will lead to significantly higher productivity for
both end users and system administrators. In addition, as these capabilities are currently provided
through disjoint and often overlapping software, the integration will substantially reduce the costs
needed for developing and maintaining individual software. In the following, we further detail the
key ideas and new capabilities under the new paradigm.

Center as a Cluster: Unlike the traditional paradigm of running an RM instance on each sep-
arately managed cluster, the new paradigm must manage the entire computing facility as one pool
of resources. There must be a single site-wide system image from the perspective of users as well
as system administrators. With this approach, file system servers such as Lustre clusters, and vi-
sualization and serial batch systems can be aggregated with compute clusters into one management
domain. Hence, our RM can make better global scheduling decisions.

With integrated, site-wide monitoring, it becomes easier for the new paradigm to associate global
Reliability, Availability and Serviceability (RAS) events such as a global file system failure with an
affected job and to make that information part of the job’s data provenance record. When the RM
obtains a global view of resources including shared persistent storage, it becomes possible to consider
the scheduling of I/O along with computation. In combination with I/O forwarding software, our
RM could easily set up unique I/O forwarding topologies for each job.

This paradigm also has many possible advantages for system administration. The resource
inventory for the center is managed from a central point and contains details that can drive center-
wide configuration management. A cluster is diminished as a primary, user-facing data center entity
and instead can be viewed as an arbitrary collection of resources, part of a larger system, that
happens to be attached to a single interconect domain or that have other similar characteristics. A
cluster downtime, formerly viewed as a period of unavailability, can be viewed in the new paradigm
as a period of degraded performance. Through lightweight virtualization, users obtain a degree of
independence from system software updates, which in some cases can quietly roll out across the
center between jobs with minimal impact. As the new paradigm embraces heterogeneity within
the larger system, new resources can be purchased and added on, as dictated by demand, without
the need to build a standalone cluster entity, separately named and managed, for every new type of
hardware introduced. In short, system administration activities can take place in a more centralized,
less visible manner such that they are no longer perceived by users as at odds with their productivity.

Diverse Compute Resources: The traditional paradigm has solely focused on node- and/or
CPU-centric scheduling. With the advent of hybrid compute systems utilizing specialized, hetero-
geneous resources and also of other bounding resources like power, this simple resource model has
become largely ineffective. Rather than perpetuating a node-centric resource model with support for
other resources as an add-on, the new paradigm must embrace the concept of generalized resources:
the idea of a resource is kept as generic as possible. This will not only facilitate simpler handling of
diverse resources, but also enable future expansion to resource types that have yet to be conceived.
New resource types can be provided through configuration changes and/or simple extensions that
inherit their attributes from base types to maximize reuse and foment collaboration. Various re-
source topologies can be encoded via configuration, and resources can also be given tags or labels to
which resource requests may refer. The new paradigm must also provide a generic resource query
language to allow flexible specification of resource requirements.

jeff-review: There
have been efforts in
the past to maintain
provenance for simu-
lations, but the ones
that didn’t fail were
cumbersome. Hav-
ing some of these fea-
tures built into the
RM is pretty cool and
could be one of the
nice value-added fea-
tures in your selling
points slide.

3

D
R
A
FT

Data Provenance and Reproducibility: What about the security model–should it be its own
thrust area? It seems to me As simulation plays an increasingly central role in scientific investigation,
reproducibility of results is more important than ever before. A result should be accompanied by
a data provenance record that can be used by others to reconstruct the inputs and conditions that
led to that result. It should also record unusual system activities such as RAS events that might
help in a post-mortem analysis when expected results are not obtained. The new paradigm must
produce such a record for every job. Long running parameter studies or uncertainty quantification
runs require stability for long periods of time.

Low Noise: As the number of processes in a parallel application increases, OS scheduling jitter
affects their executions to a larger degree. Minimizing the user-space system software contribution
to the OS jitter must be one of the primary goals of the new paradigm. Thus, the new paradigm
must supplant the independent monitoring, remote shell, and cron services that contribute to noise
today. The integrated services will allow users to dial up or down the verbosity and frequency of
monitoring, depending on their debug/monitoring needs versus their application’s noise sensitivity.
Cron (periodic housekeeping) jobs and rsh (remote command executions) can be performed through
the RM to minimize their impact, such as running them between jobs or synchronized across jobs.
The new RM must also be flexible enough to allow implementation of other strategies for reducing
the impact of noise, such as scheduling all system activity to a CPU core that is not shared with
the application.

Fault Tolerance: As the new paradigm manages the entire computing facility, the RM’s tolerance
to hardware and software faults and failures is no longer optional. Thus, the new RM must have
no single point of failure. Further, it must support version interoperability that allows live soft-
ware upgrades and facilitate a rolling update across the center without negatively impacting overall
availability of the facility and/or running workloads.

Security: The new paradigm must continue to support and strengthen privacy and integrity on
the network to limit vulnerability to attacks involving physical access to a system or its networks.

Research and Tool Friendly: The new paradigm needs to facilitate development and use of
scalable run-time code development tools to improve the productivity of users who must develop,
debug, optimize, test and verify their code on the next-generation systems. Similarly, it must also
facilitate research with the same goal in mind. Specifically, the new paradigm must provide highly
scalable infrastructure and rich run-time interfaces on which tools can build. Further, it must have
an ability to capture and publish sanitized system data at all levels to facilitate the use of this data
in HPC research.

Extensibility: By all means, such a paradigm shift is an ambitious goal. Thus, the new RM must
be extensible and customizable to accelerate the shift and provide features that lower the barrier of
entry into the community of developers supporting and extending the RM. Plugins, when designed
properly, can significantly help realize this vision, without having to sacrifice the stability of the
core RM software. With plugins, various RM subsystems can be replaced and extended. This can
be the mechanism for individual sites to customize their RM for their particular needs. In addition,
the new RM must be designed for testability. Ideally it should be possible to test new plugins or
even a complete new version of the RM system within the confines of a job created by a production
version. This self-hosting capability would enable regular RM regression and stress testing to be
automated without dedicated test resources or special production system arrangements.

3 Design Space

Before going into the design and implementation details of NGRM, we discuss some of the key design
challenges that the new RM paradigm presents. They represent the main factors that NGRM’s new

4

D
R
A
FT

concepts and software design must effectively address in realizing the vision and new capabilities
described in Section 2.

3.1 Design Challenges

• Multidimensional scale challenge: The new paradigm demands that the RM must manage
the entire computing facility as one common pool of resources. Compared to the traditional
paradigm, this presents fundamentally more difficult scale challenges to the RM design, not
only in the concurrency of a single workload but along several other dimensions. As concur-
rency increases, every RM run-time service must scale and noise must be put at bay. The
number of jobs and resources that the RM must manage will drastically increase; the amount
of run-time information that the RM must monitor, trace and store will grow in the scaling
limit of the facility. Thus, this challenge precludes any centralized design in an attempt to
gain a wider view over the resources at the facility.

• Diverse workload challenge: The new paradigm must recognize that different applications have
different performance-limiting factors, and this imposes more complex requirements to how the
RM should model the compute resources. The traditional approach of modeling resources as
a collection of compute nodes will only work well when the application is compute-bound.
Modern workloads have grown in their complexity, and even today, only a small fraction of
modern applications is compute-bound.

• Dynamic workload challenge: Not only must the paradigm support disparate performance
limiters across different applications, but also must it suit varying performance limiters within
a single application. Our applications and their programming paradigm are becoming increas-
ingly dynamic with different resource requirements at different phases.

• Power challenge: As one specific example of emerging resource types, power is becoming
critical. When the computing facility becomes power-bound instead of compute-node-bound,
the new paradigm must help it to schedule workloads based upon the maximum power limit at
any level at the facility. Thus, the resource representation of the new RM must be generalized
enough to model consumable resources like power.

• Scheduling challenge: As more diverse attributes of resources are factored into scheduling,
more stalls can occur in the schedule. For instance, N compute nodes may sit idling simply
because they do not meet the network proximity requirement for a job that requested N nodes
all connected at a same lower-level switch. Thus, our design must provide alternative ways to
fill the stalls to meet this challenge.

• Backward compatibility challenge: The new paradigm must also be able to model the tradi-
tional paradigm, as its small subset. This then provides our design with a straightforward path
to backward compatibility with legacy scripts from a traditional paradigm such as Slurm.

• Integration risk: In the new paradigm, the RM must integrate other software essential to
the next-generation computation. But with higher integration comes the risk of hard-wiring
assumptions that later prove to be confining. That can force changes down the road that are
inconsistent with the initial design. This motivates an extensible framework design.

• Higher downtime costs: The impact of downtime under the new paradigm becomes much
greater: if not designed adequately, a downtime can negatively affect the availability of a large
portion of the facility and/or running workloads across it. Thus, the new paradigm must be
tolerant of hardware and software faults and failures with no single point of failure and must
also support live software upgrades. ned-review: How

to reconcile con-
flict with security
requirements? For
example, an attacker
might request a
known-vulnerable
kernel version. jg:
Restrictions on this
are explained in
Lighweight Virtualiation
Model paragraph.

• Separation-of-concerns challenge: Many attributes of the new paradigm motivate a much
higher degree of separation between the software level visible to applications and system-level
software. For example, the paradigm must be able to reconstruct the user-visible software level
to provide better reproducibility of simulations while not locking the system software level.

5

D
R
A
FT

• Security challenge: As the new paradigm increasingly motivates a highly distributed, hierar-
chical software design, the importance of security across and within the components becomes
greater.

• Productivity challenges: The new paradigm must improve end-user productivity in part through
tightly-integrated support for development and use of scalable code development run-time tools
and research.

3.2 New Conceptual Models

In this section, we describe some of the primary conceptual models that will embody this new
paradigm while addressing the multitude of design challenges. The models form the basis for the
software design of NGRM. ned-review: The

discussion here
doesn’t really make
much sense until
you read section 4.
I would provide a
forward reference to
assure your readers
that the concept will
be explained in more
detail later on.

Unified Job Model: Traditionally, a job is simply defined to be a resource allocation, a concept
too weak to support the new paradigm. Rather, we unify the traditional job notion with the notion
of a resource manager instance—an independent set of resource manager services. The RM instance
must be delegated the main responsibility of managing the resources allocated to the job. Then, the
unified job model becomes the foundation on which to build a hierarchical, resource-management
scheme to address the multidimensional scale challenge. In addition, an RM instance can implement
compatibility mode with a particular traditional paradigm only over its own allocation, providing a
straightforward path to address the backward compatibility challenge.

Job Hierarchy Model: To scale the new paradigm in the scaling limit of the entire computing
facility, we must avoid a centralized approach: the new paradigm requires a hierarchical management
scheme with a well-balanced, multi-level delegation structure. For this purpose, we use a tree-based
job hierarchy model that has many proven advantages for extreme scalability. In this model, a
job is only required to manage its children jobs, which would be only a small fraction of the total
number of jobs that are run across the entire computing facility. Further, several guiding principles
throughout the job hierarchy strike a balance between the management responsibility of a parent
job and delegation/empowerment of a child job:

• Parent bounding rule: the parent job grants and confines the resource allocation of all of its
children.

• Child empowerment rule: within the bound set by the parent, the child job is delegated
the ownership of the allocation and becomes solely responsible for most efficient uses of the
resources.

• Parental consent rule: the child job must ask its parent job when it wants to grow or shrink
the resource allocation, and it is up to the parent to grant the request.

In general, these rules enforce the first principle of the new paradigm: imposing highly complex
resource bounds to guarantee the highest operational efficiency at any level across the computing
facility, while enabling most efficient execution and scheduling of the workloads within these bounds.
At the same time, this model is the most fundamental design concept, which forms the basis to
address many of the design challenges including the multidimensional scale, dynamic workload,
power, and scheduling challenges.

Generalized Resource Model: In the traditional paradigm, compute resources are modeled
primarily as a collection of compute nodes, a simplistic perspective ill-suited for the new paradigm.
Today’s applications are diverse with disparate limiting performance factors beyond floating point
computation. Further, computing centers are increasingly concerned about managing new resource
types such as power and shared persistent storage. The generalized resource model is our concept
to represent various resource types and their relationships that can impact how well applications
perform and the computing facility operates. Our generalized resource model also includes a unified

6

D
R
A
FT

resource specification and description language. Speaking the same resource description language for
request specification provides transparency and fine-grained expressibility. Our generalized resource
model addresses not only the diverse workload and power challenges, but the scheduling challenge.
More specifically, the unified language approach allows users to express their resource requests more
flexibly, e.g., using ranges or boolean expressions instead of hard amounts to allow requests to be
fulfilled from several equivalent resource types. This makes the scheduling granularity of jobs finer
and more malleable.

Resource Allocation Elasticity Model: As our applications and their programming models
are becoming increasingly dynamic, the new paradigm must support an elasticity model where an
existing resource allocation can grow and shrink, depending on the current needs of applications
and/or the computing facility. We support the elasticity model within our job hierarchy framework
above: a child job sends a grow or shrink request to its parent, which can go up the job hierarchy
until all requisite constraints are known for this request. Also, combining this with the generalized
resource model, the elasticity can be expressed for any resource including power consumption. Our
elasticity model addresses not only the dynamic workload and power challenges, but also scheduling
challenge. When a significant schedule stall is created with no small jobs to backfill, some of the
currently running jobs can grow into these stalled resources and possibly complete sooner.

Common Scalable Communication Infrastructure Model: Our scalability strategy with
respect to a large number of compute nodes is to provide a common scalable communication frame-
work within each job. When a job is created, a secure, scalable overlay network with common
communication service is established across its allocated nodes. Except for the root-level job, the
existing communication session of the parent job assists the child job with rapid creation of its own
session. A communication session is only aware of its parent and child and passes the limited set
of control information through this communication channel. Thus, this model enables highly scal-
able communication within a job, while limiting communications between jobs, addressing both the
multidimensional scale and security challenges. Further, this backbone per-job communication net-
work supports many well-known bootstrap interfaces for distributed programs including many MPI
implementations as well as run-time tools, and thus in part addresses the productivity challenges.

Self-Hosting Model: We use a self-hosting model to instantiate a new RM instance: the parent
is capable of launching a standalone copy of itself as a child job, but possibly with different plugins.
This makes it easier for developers or a quality assurance team to test new RM versions, helping
addressing the higher downtime costs challenge. Further, self-hosting with new and experimental
plugins encourages experimentation and facilitates research activities within a production instance,
addressing the productivity challenges, too.

chris-review: Is
making OS-level
virtualization part
of the design going
to limit NGRM’s
portability e.g. to
exascale systems that
may not run Linux?
jg: Portability to
non-Linux systems
was not a goal of
the project, however
OS-level virtualiza-
tion is available in
FreeBSD jails, Solaris
zones, and AIX
WPARS. It will likely
be implemented
through NGRM
plugins allowing for
some portability or
replacement with
other container
methods such as full
virtualization, chroot
jails, etc.

Lightweight Virtualization Model: The lightweight virtualization model is our response to the
higher downtime costs, separation-of-concerns and security challenges. Full-fledged virtualization
techniques like Xen and Kernel-based Virtual Machine (KVM) have many advantages for these
design challenges, but that approach has proven to be ineffective for HPC due in large part its
high overhead [43]. Instead, our virtualization strategy exploits Linux kernel-enforced resource
management and isolation mechanisms to launch applications in containers with virtually no impact
on performance [53]. Within a container, private file system namespaces allow the system and
applications to have divergent file system views, and to access file systems with different constraints.
For example, the RM and other system software might be launched from one version of the root
file system with no access restrictions, while an application might be launched from another with
setuid capability disabled. The decoupling and isolation will be the key to the much desired ability
to upgrade the software levels in the machine’s root file system without affecting any of the libraries
that an application might be using, and vice-versa. Similarly, one can upgrade the system OS
image at idle points between jobs, with user-level software remaining unchanged, or vice versa.
The separation of concerns gives more flexibility to the organization in determining software update

7

D
R
A
FT

policy and in fact could allow users or code development teams to control the software levels affecting
their application, independent of other applications.

The lightweight container approach will be used to tightly control the access that applications
have to system resources. For example, it is possible to run the job in its own network namespace
such that direct access to the system management network is unavailable, or limited by container-
specific firewall rules. A job could be further isolated on its own virtual private network. Containers
with private file system namespaces can limit visibility of file systems and other system resources to
jobs based on the site policy, significantly addressing the security challenge.

4 Next Generation Resource Manager
ned-review: With
this sentence it be-
comes clear that the
self-hosting model is
a core concept in the
design of NGRM, and
not just a nifty tool
for NGRM develop-
ers. The earlier sec-
tions on self-hosting
should emphasize this
aspect.

To realize our conceptual models, NGRM uses a divide-and-conquer algorithm based on job re-
cursion. As our unified job model dictates, we design NGRM so that every job is actually a full
implementation of the NGRM system, and therefore users can submit new jobs to an existing job to
access the full power of NGRM for managing resources assigned to it. The existing job and the new
ones then form the parent-children relationship according to our job hierarchy model. In principle,
our design enables this recursion to occur indefinitely so that the resources in the entire HPC center
are divided and conquered up to any level suited well for the specific needs of the center and/or
workloads. To simplify and generalize this scheme, we must first represent a wide range of compute
resources in a tree-based hierarchy.

Figure 1 illustrates our representation for a modern HPC center. As shown in this figure, the root
of the tree (Center) represents the entire center-wide resources. At the next level, these resources
are refined to be some number of clusters (Cluster), the maximum power budget (Power), and
software licenses (Licenses). Power and Licenses illustrate that this scheme can easily represent
a wide range of resource types as well as their relationships—i.e., our generalized resource model.
Expanding any of the second-level nodes, one can further refine its resource distribution. In this
case, zooming on Cluster 2 refines its resources into some cluster-local file system (Storage)
and an interconnect domain (Core Switch). Next, the Core SW resource has some number of
Rack resources associated with it, and an arbitrary Rack has some number of compute nodes and
its maximum Power budget. And similiar resource refinements and relationships hold true at the
node level as well.

We now walk through mapping our job recursion algorithm to this hierarchical resource represen-
tation. When NGRM initializes, only a single root or bootstrap job exists. Analogous to the UNIX
init process, the root job is the only job that does not have a parent job—i.e. it solely serves as
the root of the tree-based job heirarchy. Instead, the root job gets global information about entire
compute resources, users, and configuration from a scalable, peristent database that serves as our
configuration repository. To show this concept, Figure 2(a) overlays the root job (job 0) on the
entire resource tree.

Users of the root job then submit all new job requests to it, which are scheduled by the scheduler
of the root job. Each child of the root job is itself a full NGRM instance according to our unified job
model, thus users of a child job can further submit new job requests to the child job. The child may
have different, customized scheduler and environment in accordance with our self-hosting model. As
shown in Figure 2(b) and (c), we have a single job (job 0.x) managing the entire resources in a
single cluster, and its child job (job 0.x.y) running on a subset of that cluster’s resources. The
root job and its progeny all have the following features:

• A job owner and users in its access list who are able to run within the current job and/or
submit new jobs;

• A resource manager component configured with the list of resources allocated to the job, their
topology and other information;

• A scheduler that accepts and schedules new jobs;

• A job database that records new, running, and completed child jobs;

8

D
R
A
FT

Figure 1: Hierarchical View of Resources in an HPC Center

9

D
R
A
FT

Job 0

(a)

Job 0

Job 0.x

(b)
Job 0

Job 0.x

Job 0.x.y

(c)

Job 0

Job 0.x

Job 0.x.y

LWJ0 LWJ1

(d)

Figure 2: An example job hierarcy shown on top of a resource hierarchy. (a) Job 0 spans all resources, (b)

job 0.x runs across all of Cluster 2, (c) job 0.x.y runs across nodes N1–5, and finally (d) two lightweight

jobs are instantiated on N5.

10

D
R
A
FT

• An “isolated” communications framework with gateway functionality for relaying messages to
the parent—i.e., following our common scalable communication infrastructure model;

• A distributed and featureful run-time environment capable of launching or assisting the launch
of parallel applications and distributed tools;

• An “interactive” node on which batch scripts and/or user logins are contained;

• A resolvable domain name based on a unique job id;

• A local monitoring domain;

Following our self-hosting model, we design many of these components via plugins or with plugin
capabilities. We expect that several features will be user-selectable during job submission. For
example, the root job may have a complex, distributed scheduler, whereas users may want to choose
between FIFO, backfill, or other simpler schedulers depending on the in-job workload.

By default, only the owner of a job may submit new jobs or access the run-time services of a
running job. While the ownership of a job should not be changed, it will be possible for users to add
other users to the access list within their job, thus “inviting” the submission of new jobs by others.
The requirement for this feature is clear when considering the root job, from which all other jobs are
spawned. This job will be owned by a privileged user such as root, yet the system administrators
will obviously want to open up this root job for access to all users who should be able to run jobs
in the center. ned-review: If a

parent dies is the
child ”reparented” so
it’s data can still be
reaped (i.e. becomes
an orphan in the
UNIX process model)

When a job terminates, either due to a time limit or the work submitted for the job has completed,
the job releases most resources back to the parent job. The control functions of the job remain and
wait for an asynchronous reap operation from the parent. When the job is reaped, the parent
job reads in all data from the child’s local job including its resource database. The parent then
instantiates that data in its own databases. In this way, global information about jobs percolates
back up through the job hierarchy, eventually back to the root job. The root job periodically updates
the global, persistent databases.

In our job recursion, the so-called base case is a single job in which a single parallel application
is invoked. In this case, a fully functional child job is actually not needed, and we introduce the
concept of a lightweight job (LWJ) for efficient resource use. An LWJ is submitted and runs on the
resources of the local job, but does not result in a new invocation of all the features of a full job.
Where NGRM jobs are like processes in a UNIX process tree, LWJs are like threads running within
a process. The final case in Figure 2 is an example of two LWJs that divide the resources of a single
node.

LWJs have access to a feature rich, distributed, run-time environment with a shared key-value
store, advanced placement services, and a plugin interface that allows extension of these services
for unique requirements. This environment will enable the quick deployment of advanced run-time
features such as fast parallel launch of MPI applications and seamless tool integration. Since LWJs
use the same interface to job management as full jobs, their existence, assigned resources, duration,
etc. will be recorded in the local job database for posterity. To run an LWJ, a user must be the
owner of the current job or on the run-time access list for the local job.

4.1 Comparison with Traditional Job Schedulers / Resource Managers

In this section, we draw comparisons between NGRM’s constructs and traditional terms to show
that the traditional paradigm can easily be reduced to our new paradigm.

job In traditional terms, a user submits a request to a batch scheduler running on a particular
cluster for an allocation of computing resources. This request is added to a queue of other such
requests. When the scheduler grants a request, a job is begun and a set of resources are allocated to
the job. At that point, one or more processes are launched to do the work of the job. The traditional
job will be recognized as the base case of the NGRM job, although without the unifed RM instance
and hierarchy. In NGRM, the request is submitted not to a batch scheduler managing one cluster,

11

D
R
A
FT

but to another job (perhaps the root job) which manages a subset of resources. A scheduler running
in that job allocates resources, and launches work as another job.

job step Depending on the system, processes are launched by a remote launcher such as mpirun
or srun. In Slurm terms, each set of tasks so launched are known as a job step. There can be
one or more job steps active within a job throughout the life of a job. These can run sequentially
or in parallel, and can either run on dedicated or shared resources. In Slurm, they are processed
within the job by a dedicated FIFO-based job step scheduler. By first approximation, the job step
maps to the NGRM LWJ. Job scripts that invoke a series of job steps will translate to a series of
LWJs in an NGRM job, processed by the regular NGRM scheduler and the same in-job resource
management machinery that would be used to launch regular jobs. Because each job is endowed
with the capabilities of the full system, there is immense flexibility in how a job structures its work
internally. It can select a scheduler plugin appropriate to the task (or provide its own), express
complex resource requirements and job interdependencies, and run work as LWJ’s or full isolated
jobs.

reservations Historically, batch schedulers provide a means to reserve a set of resources for ex-
clusive use by a user or group of users. These reservations are typically created in advance and are
offered as Dedidcated Application Times (DATs) for users’ exclusive use. Often this process involves
some manual setup and special announcements. In NGRM, job reservations will take the form of
regular job (with a future start time) under which user jobs will run. As with all NGRM jobs, the
owner of the DAT job (the DAT coordinator) is empowered to manage user access to the DAT,
instigate custom monitoring, custom scheduling, arrange for access to dedicated file systems, etc.
Thus in the new paradigm, the DAT is just another job that should not require special handling.

job accounting In Slurm, the history of a job includes a detailed accounting of each job step
including the resources used and the duration of the job step. Job and job step accounting statistics
are commonly saved to a database. In NGRM, the LWJ accounting information and other data
is saved to the in-job job database. Upon termination, the job’s data is reaped by its parent as
described above, ultimately landing in the persistent copy at the root job level.

4.2 Project Organization and Thrust Areas

To hasten the design, development, and delivery of the initial version of NGRM we define four
relatively independent thrust areas. Each thrust area will carry out the vision and high-level de-
sign articulated above with a focus on a particular subsystem or group of subsystems that have a
natural coupling. The overall design of NGRM will evolve and require the whole team to weigh in
on important changes, and the design of interfaces between subsystems will require collaboration
between thrusts, but the work in each thrust can in large part progress independently, building on
the strength of the other thrusts.

Deliverables in each of the thrusts will be structured to leverage the framework approach to get
the system up and running early with simple plugins that are enhanced later. Early prototypes will
be used to accelerate the design of subsystem interfaces and to obtain feedback from stakeholders
and domain experts as soon as possible. Off-the-shelf components, external collaborations, and novel
ideas from the research and development communities will be leveraged where possible. Thrust areas
will adhere to a common set of project development practices and standards (see Appendix ??).

Each of the thrust areas is briefly introduced below, then described in more detail in the sections
that follow.

Communication Framework The Communications Framework thrust will realize our common
scalable communication infrastructure model. Building upon mature and portable Internet protocols
and services, the comms framework enables rich, scalable communications services within a job and
more limited communication between jobs using the job’s control node as gateway. A comms toolkit

12

D
R
A
FT

provides a security model, tools for encoding and decoding messages, and tools for transporting
messages between nodes using various messaging patterns including PUB-SUB (with multicast),
RPC, and streaming. A comms message broker tracks node liveness, provides support for building
fault-tolerant services within the job, and provides a multicast scheduling trigger used to synchronize
system overhead within the job to reduce noise. A persistent reduction network provides the structure
needed to build tools and services that have in-situ reduction capability, rooted at the control node.

Resource Management The Resource Management thrust encompasses the configuration, schedul-
ing, and tracking of resources, jobs, and users in the NGRM system. To meet our new paradigm,
this thrust must focus on making the RM subsystem generalized, flexible, and extensible. To that
end, the NGRM RM system will develop a domain-specific resource description language which will
be used to describe the configuration, current state, and topological organization of resources, while
also being capable of describing requests for those resources. The RM thrust will also develop a
set of scalable, generalized databases or repositories to store information about resources, jobs, and
users – one set as a global, persistent datastore, and another short-lived set of databases at each
job level. At the global, persistent level a resource repository will act as s top-level configuration
database for resources. A read-write copy of this repository will be available within each job instance
(at this level termed the resource database), such that any job may modify resource attributes as if
it were a full instance of NGRM. The global job repository will be responsible for storing historical
job information, including, but not limited to, resources assigned to the job and all its children jobs,
job provenance records such as software levels and job environment, and any RAS events or other
monitoring data associated with the job run. Within each job, a job database temporarily serves
as the job repository until job destruction, and is also the interface to job submission, termination,
and alteration activities. Finally, the global user repository is used as a source for user-specific
information such as UID, and also possibly user preferences, roles, and so on. Within each job, the
local user database can be used to control permissions for submission of new job requests, launching
of lightweight jobs, and other access control activities.

The scheduler is also a critical component of the RM thrust area, as it is responsible for computing
a job execution schedule based on available resources, constraints posed by users in their job request,
and policy enforced by resource owners. The concept of the resource description language will be
extended to jobs with the introduction of a job description language which is flexible enough to
describe complex job resource and time requirements. The scheduler interface to NGRM will be via
a powerful plugin subsystem, which will allow alternate job schedulers to be swapped in, possibly
on-demand, as jobs are launched in NGRM. (For instance, the root job may use an advanced
fairshare scheduler, while a job launched by a researcher for a parameter study may incorporate a
simpler scheduler tuned for high throughput). The plugin interface for the scheduler should ease
the development of scheduler algorithms for third parties, and shall not require that the scheduler
software be built with access to NGRM source code. The scheduler interface will offer services that
allow users to query when their job might run, for example by exporting the currently computed
schedule as a diagram, or by estimating a start time for a given job or set of jobs.

Monitoring Resource managers must monitor resource health to avoid scheduling work on broken
hardware. NGRM provides a comprehensive monitoring environment including a plugin framework
with data reduction capability, synchronization of monitoring overhead across the job, and the ability
to tune the monitoring period and change the plugin stack on a per-job basis. A fault notification
system enables system software, runtimes, and applications to share fault information as a basis for
building fault-tolerant workloads and for recording interesting events within the job record. NGRM
monitoring interfaces with an external log database intended to support post-mortem analysis, and
to an external enterprise monitoring system such as might be used in a site operations center.

Workload Runtime and Placement The NGRM runtime launches the user workload such
that it is confined to allocated resources using a set of confinement plugins and is provided a set
of services intended to support application runtimes and tools operating at extreme scale. These
services include a distributed key value store which facilitates disseminating bootstrap information

13

D
R
A
FT

to distributed tools, a unified software bootstrap interface which provides common interfaces to a
variety of tools and runtimes, and a job function synchronization service which assists with the
placement of tool processes co-located with application processes. The effort required to build a
distributed tool on top of these services and the comms layer will be greatly reduced from today,
enabling proof-of-concept research tools or even one-off tools to solve a particular problem to be
created in a short amount of time.

14

D
R
A
FT

Internet Protocol transport

comms toolkit

comms message broker

reduction network

Figure 3: Communication Framework Layers

0MQ

session

security ctx
or

ProtobufJSON or

MUNGE

or SCTP

Figure 4: Comms Toolkit Layers

5 Communication Framework

The NGRM architecture is hierarchical and recursive (A.3, req. 4.1). A root instance of NGRM
contains all the idle resources. A job spawned by the root instance contains its own NGRM instance,
which may in turn spawn jobs, ad infinitum. When a job terminates, the job’s instance terminates
and resources return to the parent instance.

The communication framework supports this architecture by establishing a comms session1 to
contain each NGRM instance and provide a foundation for the distributed components of NGRM to
be built upon. The framework enables secure, scalable communication within a comms session, limits
communication between sessions, and allows new comms sessions to be created, resized, destroyed,
and monitored by existing ones in a parent-child relationship. ned-review: A

worked example
would be useful here.
jg: for now, section 7
might be helpful.

A comms session is only “aware” of its parent and immediate offspring. Any communication
between siblings would have to be orchestrated by the parent. This sandboxing arrangement should
encourage the higher level components of NGRM to be built so they can operate at any level of
recursion, thus improving their testability and making development of replacement components
easier.

It should be noted that although NGRM obtains scalability from the job hierarchy, the idle root
comms session must contain all the systems and resources managed by NGRM and therefore must
handle the full 100,000 node scalability target (A.1).

The communication framework consists of four main layers: IP protocols and services, comms
toolkit, comms message broker, and reduction network, shown in Figure 3. Layering is not rigid;
that is, higher level NGRM components can use any of the layers directly as appropriate2.

5.1 Internet Protocols and Services

The NGRM comms framework is layered upon Internet Protocol (IP)3 and presumes complete IP
level unicast and multicast connectivity across participating systems, so that any collection of nodes
can be wired up in a comms session without the need to re-implement the equivalent of IP routing
within the framework.4 The addressing, routing, and subnetting of this IP network is beyond of
scope of NGRM, except that its design should introduce no single points of failure (A.3, req. 1.2) and
should avoid performance bottlenecks which would unnecessarily constrain the resource manager’s
node selection options.

The comms framework should support communication over multiple (fully-routed) network planes,
for example using either a management ethernet or IP-over-IB or both according to the perfor-

1Comms is a shorthand for NGRM Communications Framework and is not related to MPI communicators.
2At this stage in the design of NGRM, we do not wish to overly constrain the solution space for the other

components that will use the comms framework. For the same reason, distributed object oriented frameworks, such as
those derived from CORBA, were rejected as too confining. This stance can be re-evaluated as the other components
are designed.

3The low-latency and low-overhead bulk transfer properties of RDMA communications such as provided by Com-
mon Communication Interface (CCI) were considered and rejected as unnecessary for NGRM.

4Building a reliable 100K node IP internetwork is a solved problem. Building a hardened overlay network with
similar properties is difficult and would limit our ability to leverage other software built on IP.

15

D
R
A
FT

Peer Peer

ethernet

IP-over-Infiniband

X

Figure 5: SCTP supports transparent multi-homing of one socket over multiple network planes,
for example using both Infiniband and Ethernet in a cluster. If one network drops a packet, it is
retransmitted on the other, which with proper tuning, improves both availability and responsiveness
compared with TCP single-homed sockets.

mance/reliability requirements of the particular application.
Dynamic unicast IP address allocation must be available to support dynamically created virtual

nodes (Linux containers launched with virtual network interfaces). In fact, it is worth noting here
that we expect to make heavy use of virtual nodes in NGRM for our internal services that should not
be co-located with computation. Similarly, dynamic multicast address allocation must be available
to support private multicast groups within dynamically created comms sessions. These requirements
can be addressed by existing technology such as DHCP [19] and MADCAP [30]. ned-review: Would

we point resolvers ou-
side NGRM at the
NGRM internal DNS?
jg: I envision NGRM
operating in a pri-
vate network. In that
case, resolving pri-
vate addresses from
outside doesn’t seem
useful. However, we
may want to consider
whether we need some
way to map external
addresses with names
to internal ones.

A private DNS [38] is used by the comms framework to map a hierarchical namespace to the
comms session hierarchy. The root comms session has the root domain name, e.g. “NGRM.”, and
the root server contains address records for all hosts in the domain, e.g. “n1.NGRM”, “n2.NGRM”,...,
“n99999.NGRM”. Comms sessions spawned by the root session get their own sub-domain, e.g. “s1.NGRM”,
“s2.NGRM”, “s3.NGRM”, and contain address records for the nodes assigned to them, e.g. “n1.s1.NGRM”,
“n2.s1.NGRM”, “n3.s1.NGRM”. Sub-domains are created for each level of comms session recursion.
Each session runs a set of DNS servers for its domain. When a node joins a new session, its DNS
resolver is reconfigured to use the session DNS servers and to search the session’s DNS domain first,
thus each level of session overlays a new set of names over the root session’s that provides job-centric
naming uniformity. DNS SRV records [28] provide a rudimentary service location brokerage within
the session. Well understood techniques for DNS fault tolerance, caching, and dynamic reconfigu-
ration are leveraged to scale performance in large sessions such as the root session.

A comms session could optionally be spawned inside a virtual private network (A.4, UC21) such
that IP communication is limited to within the comms session. IPsec [35] with a pre-shared session
key could be used to provide session integrity and privacy at the IP layer if desired.

5.2 Comms Toolkit

The framework provides a toolkit for sending and receiving protocol messages privately and se-
curely within a session, with the goals of providing a robust foundation for NGRM components
and promoting rapid development, code reuse, and interoperability. The toolkit includes messaging
libraries, protocol encoding/decoding libraries, and security options. Toolkit pieces can be mixed
and matched according to application requirements. We may cull the comms toolkit as we learn
more about the pieces while prototyping other NGRM components.

Two messaging approaches of interest are ØMQ [31] and SCTP [48]. ØMQ provides the ability
to manipulate opaque, multipart messages, and carry them across various transports, including
TCP and Pragmatic General Multicast (PGM) [46], a reliable multicast transport protocol, using a
socket-like API. ØMQ sockets can exchange messages using patterns including REQ-REP (RPC),
PUB-SUB, and PUSH-PULL (message stream). ØMQ can be used to build applications or custom
message brokers. Complex message routing topologies such as tree-based overlay networks (Figure 8)
can be built from simple components. ØMQ has a large number of language bindings.

SCTP is an IETF-standardized, message-oriented transport developed in the telephony world
with an implementation in the Linux kernel. It offers multi-streaming, the bundling of streams

16

D
R
A
FT

REP

REQ

Client

Server

SUB

PUB

Publisher

SUB

Subscriber

SUB

multicast (PGM) or unicast

Subscriber Subscriber

PUSH

PULL

Consumer

PUSH PUSH

Producer

fair-queuing

Producer Producer

Figure 6: ØMQ provides a sockets-like API that supports several messaging patterns including
REQ-REP, PUB-SUB, and PUSH-PULL. These basic patterns are complemented by other patterns
used when building distributed message brokers. For example, XPUB-XSUB handles subscription
forwarding to optimize multi-level broker based publish-subscribe networks.

in one association (connection). Individual streams can be configured for different ordering and
reliability semantics. SCTP supports multi-homing for reliability and congestion avoidance, as
shown in Figure 5, and can transparently generate and check an HMAC for messages using a pre-
shared key to implement message integrity. Unlike ØMQ, SCTP is connection-based and does not
implement a standardized reliable multicast mode.

Two widely used methods of encoding data in messages are JSON [17] and Protocol Buffers [27].
JSON is a self-describing format that supports protocol evolution without recompiling endpoints. It
has many language bindings but it is also space-inefficient and slow. Protocol Buffers is a compiled
format that supports only limited protocol evolution without recompilation. It has relatively fewer
language bindings than JSON but is space-efficient and fast. Depending on the application either
may be appropriate. chris-review: Why

should comms session
forget parent’s key?
Is a new session
formed for each level
of recursion or is
there a single thing?
Document seems to
imply the latter.
jg: The high level
concept is that the
portion of the CMB
running on each
node is associated
with one session at
a time. It forgets
the parent context
when it joins a child
session. However the
parent retains the
context of its children
so it can interact
directly with a child
node if necessary, for
example to reclaim
resources from a hung
session.

Message integrity and privacy can be obtained using either a session security context or via
MUNGE [20]. Each comms session is allocated a session key by its parent which is used for es-
tablishing a shared security context for messages exchanged within the comms session. The shared
security context allows communicating entities to have integrity and privacy (from children, sib-
lings, and their children) without the overhead of a key exchange for each pair of communicating
endpoints. This is especially useful for non point-to-point comms patterns such as PUB-SUB. The
parent retains state about its offspring including their session keys. Children forget their parent’s
key; thus as comms sessions recurse, parents get privacy from children but not the reverse. An
application acting as a gateway between parent and child would use the child’s session key as it is
known by both parent and child.

If the sender of a message needs to be authenticated, or if messages must be kept private from
other users within the session or its anscestors, messages can be enclosed as payload in a MUNGE [20]
credential. In order for this to work, NGRM’s comms framework must operate within a single
MUNGE security realm, which implies a single administrative domain with consistent user and
group identities.

17

D
R
A
FT

Figure 7: CMB Architecture: comms sessions are formed hierarchically. Session control nodes (red)
are the interface between a session and its parent. An idle root session is shown on the left; one
and two sessions running work (blue) under the root are shown in the middle, and one of those has
spawned a child on the right. Note that although control nodes are depicted as being allocated from
real nodes, depending on the session size, they may be created on demand as virtual nodes.

5.3 Comms Message Broker

Within a comms session, a distributed comms message broker (CMB) is established to provide basic
session services. The CMB is responsible for launching new sessions, managing session membership,
detecting and adapting to session node failures, providing a basic event messaging system, and
starting other NGRM components.

chris-review: Is the
root of the tree in the
CMB design a single
point of failure? jg:
This is one of the is-
sues that will need to
be addressed in the
fault tolerance design
for the CMB, a future
work item.

Architecture The CMB is a distributed service with nodes interconnected in a tree-based topol-
ogy. A distinguished control node serves as the heart of the CMB and the root of the tree. The
control node is distinguished because it alone communicates with the parent session, and it holds
the master copy of the session state. The hierarchical relationship between comms sessions with
the control node acting as gateway is depicted in Figure 7. The details of any internal tree-based
interconnections are not depicted in the figure, and are a future design activity.

Session State The CMB implements a simple key-value store to manage the internal state enu-
merated in Table 1. The session state for the largest session is small enough to easily fit in memory.
The master state for a session lives on the session control node. Slave caches on other nodes in the
session are loosely consistent with the master copy; that is, reads may utilize a local or peer cache,
which may be slightly out of date relative to the master copy, while writes are through to the control
node. Each write on the control node updates the key’s generation number, its value, and triggers
a state update event which can be used to update caches and synchronize other software using the
state. If the control node crashes, state can be recovered from one of the slave caches.5

FIXME: The per-job
scheduling trigger
probably has insuffi-
cient emphasis here.
It is an important
benefit that reduces
our noise footprint
and could be gener-
ally useful to other
system/tools software
written to run within
a job.

Event Messaging The CMB implements a session-wide event messaging service. Clients of the
CMB on any node can publish a (tag,message) event tuple. Other clients can subscribe to events by
tag. The CMB ensures that event messages are routed internally from publishers to subscribers. The
event service is reliable, and for events originating on the same node, sequenced for in-order delivery.
Events are not queued for late subscribers. There is a special event.sched.trigger event sent out
periodically to synchronize the CMB’s internal functions (and those of any other subscribers to
the event) across the session with the goal of minimizing disruption to bulk-synchronous workloads
running within the session.

Session Membership The CMB maintains the current nodeset as part of the session state. The
CMB arranges for the nodeset to be mirrored in private DNS servers serving up the session’s subdo-
main. The nodeset may grow or shrink in response to higher level software allocating/freeing nodes
from the parent, or creating/destroying virtual nodes within the session. Nodeset updates will be
accompanied by internal topology updates, provided by the software making the nodeset change or
by the CMB itself depending on the situation. State update events will be published for the nodeset

5The fault tolerance strategy here is to be designed. One approach is that the parent can determine if a control
has stop functioning (see Liveness Monitoring below) and intervene to establish a new one with restored state from
slave caches.

18

D
R
A
FT

Name Description
cmb.cred = key My session key.
cmb.fqdn = name Fully qualified domain name for the session.
cmb.nodeset = nodelist List of my nodes.
cmb.addrs.node = addrs List of addresses for node, for forming DNS address records.
cmb.topology.up.node = nodelist Upward peers for node in CMB topology.
cmb.topology.dn.node = nodelist Downward peers for node in CMB topology.
cmb.alive.node = yes|no Liveness for node.
cmb.alloc.node = yes|no Allocation status for node.
cmb.attrs.node = attrlist Role attributes assigned to node, e.g. “dns” and “control”.
cmb.subscribe.key = nodelist List of nodes subscribed to key.
cmb.exec = cmdline Executable to bootstrap on each node.
cmb.child.sessions = sessions List of active child sessions.
cmb.child.session.cred = key Child session key.
cmb.child.session.control = nodelist Control node(s) for session.
cmb.child.session.dns = nodelist DNS server nodes for session, for forming DNS NS records.

Table 1: A small amount of data comprises the comms session state, which is stored in a simple
key-value store replicated across the session.

and topology changes. While nodes are allocated to a session, they remain in the parent nodeset,
tagged as allocated. They forget the parent’s session state and key. When nodes are freed back to
the parent, the parent CMB, having subscribed to the child’s nodeset update events, contacts the
freed node (using the child session key) and brings it back online in the parent sesssion.

Liveness Monitoring The CMB maintains the liveness of its nodes as part of the session state.
Liveness is assessed by forcing member nodes to communicate with the CMB at minimum intervals,
synchronized by the aforementioned trigger event. If the CMB has not heard from a node for some
number of trigger periods, it is marked down. If it finally is heard from, it is marked up. In some
cases the CMB control node may adjust its internal topology to account for such changes. As
described above, session state changes trigger state change events. Higher level software wishing to
react to node liveness changes can subscribe to state change events. The parent continues to track
liveness of nodes allocated to a child by subscribing to liveness updates via the child’s control node.
A trivial utility that asks the CMB for a list of down nodes in the current session and all of its
progeny can be written that works equally well at any level of recursion, even at the level of the root
session.

Node Bootstrap A cold started node (or restarted CMB daemon) joins the root session, obtaining
the root session key and the identity of a peer to copy the session state from out of band in a secure
manner. If the CMB is cold starting after crashing while assigned to a session other than the root,
the CMB of the root and subsequent owning sessions re-add the node from child to child until there
are no children left or it is evicted according to the policy of an owning session at any level of
hierarchy.

Executable Bootstrap In order to bootstrap other NGRM components, the CMB daemon, upon
joining a new session, launches a single process on each node, determined by the cmb.exec state
variable. This process is terminated when the node alters its session membership to join a child
session or return to a parent session. If the process terminates early, an event is generated.

Session Creation The CMB is responsible for the creation of child comms sessions. A child
session is created by building the child session state, updating the current (parent) session state,
then sending the child control node(s) the full session state, and the rest of the nodes just the new
session key and sufficient information to wire up to their peers in the internal toplogy. The DNS

19

D
R
A
FT

PUSH

PGM multicast sched trigger

PULL PUB

PULL PULL

PUSH

PUSH SUB SUB SUB SUBPUSH PUSH PUSH

back-end

internal

front-end

back-end back-end back-end

internal

Figure 8: Reduction network speculatively implemented with ØMQ. A front-end node communicates
with back-end nodes using PGM multicast in the downstream direction. Upstream traffic makes its
way from back-end nodes, through internal nodes that perform data reduction on messages, and on
to the front-end.

is updated in the parent to delegate authority for the new subdomain to the child’s DNS servers.
DNS servers are bootstrapped in the child, and the resolver is updated on member nodes to reflect
the new session.

Session Destruction The CMB destroys a child comms session by sending a message to the
child’s control node requesting that a shutdown event be sent out session wide. As nodes leave the
child nodeset, the parent reclaims them as described above in the Session Membership paragraph. If
something goes wrong, the parent can short-circuit the “clean shutdown” and actively reclaim nodes
as above, as though they had already left the child nodeset. The DNS is updated in the parent to
remove references to the session’s subdomain.

5.4 Reduction Network

The Tree-Based Overlay Network (TBŌN), exemplified by MRNet [44], is regarded as a useful
communications substrate for scaling distributed debuggers and similar tools. The NGRM reduction
network offers a similar capability within a comms session for general use by distributed NGRM
components, for example monitoring and stdout/stderr capture. While MRNet is focused on portable
tools that instantiate their own TBŌN with a custom topology for exclusive use of the tool and
tear it down when the tool exits, the NGRM reduction network topology tracks that of the CMB,
is persistent for the life of the comms session, and can be shared among components. It shares
the elasticity and fault-tolerance properties of the CMB. Data passed over the reduction network
“counts” towards CMB liveness tracking. The reduction network will obtain privacy and integrity
using the comms session security context. Message handling could be accomplished with ØMQ
(Figure 8) or by a combination of ØMQ and SCTP.

Topology The reduction network topology tracks the CMB topology. Its front-end is rooted at the
control node. Its back-ends span every node in the comms session, including those running internal
and front-end processes. The location of internal processes will be dependent on the design of the
CMB. Although the topology of the reduction network must have the elasticity and fault tolerance
properties of the comms session, we anticipate that for a session in stasis, the topology will be fixed.
For example, branching factor and depth will not dynamically adjust for performance. However, it

20

D
R
A
FT

may be possible to set tunable parameters for the job that would affect the initial CMB toplogy and
thus that of the reduction network.

jg: Is there a case
for unicast store-and-
forward like is used
in MRNet? Why
did they choose to do
it that way? Reli-
able multicast (PGM)
seems better as long
as the volume of data
remains low.

Downstream communiciation The reduction network utilizes IP level multicast (e.g. PGM)
to send data from the front-end to the back-ends. As with event messages, downstream messages
are a (tag,message) tuple with the tag used to distinguish different services sharing the reduction
network and to implement application-specific addressing, for example to address a subset of back-
end processes.

chris-review: Be
careful that user con-
tributed traffic e.g.
stdio doesn’t starve
out system control
messages. Also avoid
situation encountered
with srun where
putting srun to sleep
causes hierarchical
communication to get
backlogged.

Upstream communication Communication from the back-ends to the front-end is the main
function of the reduction network. It is unicast-based. Scalability is obtained by reductions that are
performed by internal processes, for example aggregating duplicate messages, forwarding a weighted
average of discrete samples, or simply concatenating messages. There may be any number of levels
of internal processes, with each internal process operating on raw data or data that has already
been reduced by a previous level. As with downstream communication, upstream messages are a
(tag, message) tuple with the tag used to distinguish different services sharing the reduction network.

Programming interface The programming interface for the reduction network is a design activity
that can be informed by the MRNet API [6], however because the reduction network is persisent
and shared, it has somewhat different requirements in that it must interface to components running
as distinct UNIX processes and be resilient to component failure. One approach is for applications
that use the reduction network to provide a plugin that claims a message tag space and implements
a socket activation scheme similar to systemd [23] or D-Bus [22] that associates the tag space with
named UNIX domain sockets and/or executables at the front-end, back-end, and internal locations.

FIXME: The fault
tolerance strategy
both for the CMB
and the reduction
network is rather
poorly developed in
the description thus
far. At minimum it
needs to be called
out in the WBS as
a significant R&D
activity.

kim-review: Fault
tolerance should be
more fully designed in
the comms layer be-
fore moving forward.

Fault tolerance The CMB provides notification messages when nodes cease to respond so that
other services can manage failures. The reduction network will use this facility and track the CMB
topology to remain functional when faults occur. However, although we are encouraged that fault
tolerance has been achieved for certain use cases in MRNet as described by Arnold and Miller [10],
we recognize that it will be a challenge to design our reduction network to be generally reliable and
fault-tolerant. Therefore we leave the possibility open that the design will provide these attributes
only for selected use cases and failure modes.

21

D
R
A
FT

6 Resource Management

6.1 Overview

At a high level, we designate the Resource Management (RM) thrust as concerning the configuration,
scheduling, and tracking of resources, jobs and users in the NGRM system. The RM thrust is a
key component of NGRM because it embodies the user interface to a site’s resources and offers the
capabilities for users to submit jobs and thus do useful work with those resources. Therefore, it is
paramount that the RM components of NGRM not only be generalized, flexible, and extensible, but
also powerful and user-friendly.

In this section, we will discuss the components of NGRM that provide our resource managemnt
interface and functionality. With these components, we aim to fulfil the goals described above and in
Section 4.2. We will start by describing our plan for a powerful, extensible domain-specific language
for use in describing resources and requests for those resources. We will continue by outlining the
design of a set of global databases that will be used by our RM software for configuration and
historical data. Next, we will describe the architecture and functionality of a job within NGRM’s
unified job model, and how jobs will interact between parents and children within the resource
management domain. Finally, we will discuss a flexible interface for job scheduling within the
NGRM job, and some details about job scheduling implementations in the new system.

6.2 Resource Description Language

In any resource management system there must be a method by which the configuration of resources
are communicated to the system. Typically this functionality is achieved via some form of static
configuration, that is via a text file or database that is created manually or with the help of some
kind of tool. In kind, users need to describe the resource constraints for their jobs in some form –
typically via a combination of command line options, features requests, and or using some sort of
resource specification language such as the Globus RSL [2].

For NGRM we propose a single resource configuration and specification language simply termed
the resource description language (RDL). The RDL shall be a Domain Specific Language (DSL) that
will be used to describe the hierarchical configuration, topology, and other data about resources in
the system. The language will be structured, extensible, human-readable, and hierarchical, while
being capable of representing resources and their relationships in a generic and flexible fashion. It
is expected that this language will serve not only as the base configuration language of NGRM, but
that this language will be the de-facto communication substrate for gathering resource information
such as topology, current resource state, categorization, as well as constraint specification in resource
requests.

6.2.1 Related Work

Fortunately, there exists a large body of literature in this field on which we can draw when designing
the RDL for NGRM. While our pragmatic design may not focus on ontological formalism, there has
been work in this area for describing distributed resources in a Grid [15,36,40] which show promise
for semantic matching algorithms on generic resources. Van Der Ham et al. and others have extended
the Resource Data Framework (RDF) specification from the semantic web to describe networked
resources [49–51], and Koslovski et al. have developed the Virtual Resources and Interconnection
Networks Description Language (VXDL) [37] for use in describing the end resources description and
virtual network topology in on-demand virtual infrastructures.

Several other resource management projects have also explored this area. Possibly most impor-
tantly, the Condor project implements Classified Advertisements (ClassAds) which is a language
for expressing not only resources and their attributes, but requests for these resources [1]. The
suitability of resources for resource requests (jobs) are matched using an array of multi-dimensional
gangmatching approaches. The ClassAd language is available as a standalone library. Additionally,
the OAR resource manager defines resources in a MySQL database with a static schema, but it
does organize resources hierarchically, allows generic resource definition, and allows users to request

22

D
R
A
FT

resources using a resource description language [13]. In the Legion [16, 39] Resource Manager an
inheritance based model is used for defining resources as “objects” that are extensible. Another
example is CCS [34], which implemented the Resource and Service Description (RSD) language
and its predecessor the resource description language (RDL). The RSD in CCS exports not only a
language interface for resources description, but a graphical user interface and API as well.

As part of the design of our RDL, it is expected that we will do a more complete survey of
existing work in this area such that we can apply common practice and lessons learned to our own
implementation of a resource description and configuration language.

6.2.2 Resource Description Language Design

As mentioned above, as part of NGRM development we hope to create a domain-specific language
that is easily extended and embedded, is human readable, and has the power to express our hierar-
chical resource data, topologies, and advanced resource constraints. The RDL should additionally
have to ability to contain the topology of resources (which may be different than the heirarchy of
the resources).

While a suitable existing encoding may be discovered during a full literature search, it is our
feeling that a solution based on a static data description or markup language like RDF or XML is
not going to have the ultimate flexibility and features that we require in the NGRM. For this reason,
we currently propose that the Lua [32] language would be a good fit for our requirements.

Lua is a language that was designed to be embedded in other languages, so it would be easy to
embed parsers for the RDL in various tools. It is also embarassingly easy to extend the language
using modules or directly in native Lua. Finally, the core datatype in Lua (in fact the only datatype),
is the Lua table (an associative array), which lends itself nicely to the expression of hierarchical data
as we have noted will be necessary for the RDL in NGRM. There are many extant examples of the
use of Lua as a Data Description and Domain Specific Language. See the Programming in Lua (PiL)
Book [32] for examples.

1 ComputeNode = {
2 type = ’host ’,
3 attributes = { hostname = ’’, ipaddr = ’’, memory = ’’},
4 children = {
5 { type = ’NUMANode ’,
6 id = ’0’,
7 children = {
8 { Type = ’Memory ’, id = ’0’, value = 16384 },
9 { Type = ’Socket ’, id = ’0’,

10 children = {
11 { Type = ’CPU ’, id = ’0’, children = {}},
12 { Type = ’CPU ’, id = ’1’, children = {}}
13 }
14 },
15 },
16 },
17 { type = ’NUMANode ’,
18 id = ’1’,
19 children = {
20 { Type = ’Memory ’, id = ’1’, value = 16384 },
21 { Type = ’Socket ’, id = ’1’,
22 children = {
23 { Type = ’CPU ’, id = ’2’, children = {}},
24 { Type = ’CPU ’, id = ’3’, children = {}}
25 }
26 },
27 },
28 },
29 { type = ’GPU ’, id = ’0’ },
30 }
31 }

Listing 1: A näıve example of a Lua table describing an excessively simple resource hierarchy

Listing 1 shows a very simple example of a Lua table used to describe a hierarchy of resources
within a compute node. Note that the attributes of the node resource are currently left empty, to

23

D
R
A
FT

possibly be filled in as the table is copied and appended to the children table of another resource,
such as a cluster. Used in this fashion – as a data store – a Lua table is very similar to JSON,
another popular data interchange format.

It is not expected that the RDL in NGRM will use the näıve approach as in Listing 1. Because
Lua is a full language instead of just a data interchange format, there will be many optimizations
and syntactic abbreviations we can make to ease working with and using the NGRM RDL.

For example, we expect to use the object inheritance support in Lua to allow resources definied
within the RDL to inherit from other resources. This should support collaboration and research by
allowing sharing of resource definitions as RDL “libraries” or resource definition sets. For example,
a base type might be a Node class which implements a set of interfaces that are common to all types
of nodes (such as has a hostname, ip address and so on). Specific types of nodes can inherit from
the base node object and add features (such as specialized devices, default tags etc).

Additionally, with the power of a full language at their disposal, system managers and users
can develop a range of scripts and extensions that ease working with data in the RM system. For
example, a sysadmin could write a script to create the definition of an entire cluster by reading a
comma-separated value text file, or other formatted data.

The risks of using a full language like Lua as the RDL for NGRM are also numerous. Since the
RDL will be used for resource requests and definitions, priviliged code within our RM system may be
compiling and running untrusted code. While Lua has very good native support for sandboxing [3],
this is a notoriously difficult practice to get right, and code using the RDL may need to be hardened
extremely well for any use in a production environment. Evaluation of user-supplied code should
be done within unprivileged processes as much as possible. Also, when using a dynamically typed,
runtime-compiled language like Lua, there is an increased risk of runtime exceptions, so extra care
must be taken to handle errors correctly, and it is likely that a specialized ”RDL validation” function
must be written.

6.3 Global, Persistent Data in NGRM

In the Unified Job Model of NGRM we combine the concept of a traditional job with the idea of
a resource management instance which provides the traditional features of a resource manager and
batch scheduler. However, the top-level root job in such a system will need to be initialized from
somewhere. Additionally, in order to be useful, the RM system will need some sort of persistent
record of jobs that ran on the system, for how long, and on which resources.

To satisfy these requirements, we introduce the global, persistent Resource Inventory and Job
and User Repositores. These facilities operate outside of the hierarchical job model in NGRM and
act as a source of ultimate configuration and historical data about the RM system. Each of these
facilities is described in more detail in the sections below.

6.3.1 Resource Inventory
jeff-review: We as
a center need one
go-to place to find
resource inventory
information. We
have multiple web
pages, spreadsheets,
and files that are
being maintained
separately right
now. It’d be nice
if your resource
inventory DB was
the central place for
this info – what are
the resources in the
center, what are their
properties, etc. I
love the idea of being
able to subscribe
to this repo to be
alerted of changes
– much better than
the current model
where someone has to
notice or remember a
change was made.

As noted above, the Resource Inventory is a global, persistent database which acts as the top-level
configuration for all jobs within the NGRM system. The resource inventory itself will support being
initialized, modified, and queried using the RDL, and thus will be optimized for the storage of
hierarchical resources and their topology.

how to store hierar-
chical data and topol-
ogy information to-
gether is a subject for
further research.

To satisfy our generalized resource model we must strive to build a resource inventory that is
itself generalized and flexible. To this end, we propose that the resource inventory implementation
support arbitrary tagging of resources. Resource tagging is a more general approach than the
practice of giving nodes features or properties as in traditional resource managers. We also propose
that the tagging approach is powerful enough to support RM features such as marking resources
down or drained, an even allocated. Furthermore, it is common practice for tagging databases to
allow users to supply their own tags to data in the system. Use of this kind of collaborative tagging
or folksonomy [52], could be very useful in creating a socialized system of resource management.

In order to enable the development tools around the resource inventory, and to support notifi-
cation of resource changes and reconfiguration to jobs in the NGRM system, we propose that the

24

D
R
A
FT

Figure 9: Components of a Resource Manager Instance

resource inventory export a subscribe interface in addition to a more traditional API. The sub-
scribe interface will support filtering so that tools (and jobs) can get notifications of specific changes
(perhaps to a subset of resources, or changes to a particular tag). For instance, the root job in
NGRM will subscribe to the resource inventory to get updates to resources, such as resources that
are drained or modified.

6.3.2 User Repository
jeff-review: Any
advantage/possibility
in leveraging LC’s
LDAP for this?

Since NGRM is a software system that will be used to provide users with access to compute resources,
it will require some place to store information about those users. For this purpose, we will require
a database of user information alongside the resource inventory. We call this global, persistent user
data store the user repository.

At the very least, the user repository will store minimal data about users of the current deploy-
ment of NGRM. However, the implemntation should be flexible enough to allow the storage of other
user-specific information, such as defaults, limits, roles, accounts, qualities of service, and so on.

6.3.3 Job Repository
jeff-review: If
users can add their
own data to the
provenance database,
how is long-term
storage managed,
especially if users
decide they want to
store a movie or data
file as part of the
permanent record?
jeff-review: To do
(data provenance)
”right”, each job
would have to have
a true UUID, which
is an ugly thing
to work with for
humans. So maybe
there’d be a regular
job id that’s local
to the domain (cz,
rz, etc.) that is just
an auto-incrementing
id, plus the 16-byte
uuid that truly is
unique? jeff-review:
Currently SLURM
bogs down if a person
does an extensive
long-running query
(sreport) against the
job database; how
would your design
avoid this?

The job repository is the final global and persistent data store in the NGRM system. This top-level
database is a historical record of all jobs that have completed in the NGRM system. Along with
the obvious data about a job – the start and end times, the resources assigned to the job, and the
owning users – the NGRM job repository will also store a complete provenance record for the job.
The provenance record will (configuration permitting) contain data such as the job environment,
namespace or list of installed packages, fault stream and other job-specific monitoring data. It may
also be beneficial to store other job information such as input files and stdin/stdout streams, so the
job repository will not be designed with a rigid schema.

Another challenge in designing a job repository for NGRM is storing job data from the hierarchical
job model. Similar to the resource inventory, the job repository will need to be optimize to store
hierarchical data. The intent of the job repository is to store all job data, down to even the
lightweight job invocations in the leaf jobs of the system, so there will be a mass of hierarchical data
here. Developing a system that not only efficiently represents that hierarcy, but allows advanced
and intuitive queries for the data should be a top priority.

6.4 Job Anatomy

The resource inventory and job and user repositories are not tied to any one job – they exist at
the global, persistent level in NGRM and export a common API. To fulfil the unified job model,
however, each NGRM job must contain all the same features implemented by these global databases,
but local to the job. For this purpose, we introduce the concept of an NGRM instance, which is the
embodiment of all resource management features at the job level.

The components of an NGRM instance are outlined in Figure 9. These components largely match
the global, persistent data store described in sections above, but since jobs in our RM system may
be ephemeral, these implemenations are lightweight and may be started on-demand instead of being
always instantiated. This practice of minimizing the functionalitly instantiated per instance will not
only serve to reduce the cost of starting and stopping the software for every job, but optimizes for
the base case job in NGRM – a single job running a single parallel application.

25

D
R
A
FT

Within an instance, we give these temporary counterparts to the global, persistent databases a
new name to differentiate them. They become simply the resource, job, and user databases. Each of
these job-local databases contain only the subset of information which applies to the current job. For
example, the resource DB will have information only about resources assigned to the job, the user
DB will have only the users allowed to run within the job and the job owner, and the job database
will contain information only for jobs that have run in the current job or a completed child.

As a whole, the RM instance exports similar API and publish interfaces as the top level persistent
databases. For instance, most interaction with the instance functionality of a job will be through the
well defined API. However, other functionality may be more adapted to a PUB/SUB interface, for
example a parent job will subscribe to its children for events of interest, and child jobs may subscribe
to parents for information trickling down from higher levels in the hierarchy. Interesting changes
in this context may include data about resources in the child (this resource is dead), information
about the child itself (I’m dead), or information about resources from the parent (this resource is
being drained in 20 minutes). Instance API and

pub/sub interface
is a topic of future
research.

Below, we discuss in slightly more detail the resource, user, and job databases. Detailed descrip-
tions of these components in the context of the job lifecycles are described in later sections. We also
take this opportunity to touch upon the scheduler interface within the RM instance. However, a
detailed scheduler discussion is saved for a later section.

6.4.1 Resource Database

The resource database within a job is expected to be implemented as a read-write cache of the
job’s subset of the parental resources. The resource data for a job must be writable in order to
satisfy the self-hosting requirement of NGRM. An owner of a job should be able to update tags and
configuration of resources within their job, however, non-privileged user tags and configuration will
be marked as such, and so shall not affect upstream or ancestoral job or resource configuration.

6.4.2 User Database

The user database within a job contains, at a minimum, the job owner along with an optional list
of users that are allowed to access the job. As described above, the user database may be as simple
as a list of user names, but it is extensible enough to be used for an array of other user-specific data
– preferences, roles, limits, and qualities of service are just some examples.

In NGRM we would like to grant users the ability to invite other users to submit jobs to a job
for which they are the owner. A simple example of this functionality would be the root job, which is
owned by user root and to which all users are invited. However, other use cases for this functionality
include dedicated application times (DATs) in which a coordinater may invite a group of users, or
a debug session on a large running running job where debugging experts may be “invited” to run
some diagnostics. To support this functionality, we propose that the job owner should be able to
add users to the user database, and that those users would then be able to submit new job requests
to the instance. Users with submit access shall not have access to runtime functionality of the job,
nor the ability to initiate lightweight jobs. However, it other circumstances it may be useful to have
the ability to expand the list of users that do have such access. Therefore the user database must
support both submit and runtime access lists for jobs, though it may be wise to make these lists
optional based on configuration.

6.4.3 Job Database

The job database serves the same purpose as the global job repository within an instance, but
additionally acts as the data store for pending and running jobs within the instance. Jobs are
submitted to a local instance via the API. The syntax and validity of job requests are checked and
the job request is passed through a set of plugins that may modify or reject the job based on site-
specific requirements. Valid job requests are inserted into the job database, at which point a “job
created” event is generated. Scheduler and other plugins may then act upon this event.

The job database will also support generating “job start” and “job end” events. The exact list of
events generated by
the job (and other)
database is a topic of
future study. It may
be useful to research
a method to allow
arbitrary events from
all these datbases.
However, the “job
state change” events
are key, so they are
called out explicitly
here.

26

D
R
A
FT

6.4.4 Scheduler Plugin

Another major component of the RM instance is the job scheduler. The scheduler is discussed
in more detail below, however here we note that the scheduler implementation is provided by a
plugin, and that the loaded scheduler is configured at the time of job instantiation. Thus, while it
is expected that the root job will likely have an advanced, complex scheduler plugin loaded, most
jobs running in the RM system will have a default, simplistic scheduler implementation, or perhaps
no scheduling code loaded at all, if it is unnecessary. It is also important to note a scheduler plugin
(or any other RM instance plugin) is running within the context of a NGRM job. Therefore, these
plugins have access to the full power of the the distributed job environment for use in parallelizing
work and distributing state for fault tolerance and scalability.

6.5 Job Physiology

We have briefly described the RM components in the NGRM above. In the sections below we expand
on this discussions and begin to describe how processes within a job interact with the containing
job, and how the RM instances within jobs in the hierarchical model interact with eachother.

6.5.1 The Root Job: Job 0

In our hierarchical job model, every job in NGRM has a parent and zero or more children jobs. It is
obvious, however, that the root job (or job 0), does not have a direct parent. In this special case, the
resource inventory acts as the indirect parent of job 0. When the root instance is bootstrapped by
the CMB, the root job connects to the global, persistent NGRM databases and recieves just enough
resource, user, and other configuration data to initialize. The root instance then subscribes to the
resource inventory so that it is notified of important changes. Again, the list of

“important” changes
is a subject of further
study. However, an
administrator could
tag a resource ‘down’
in the resource inven-
tory and job 0 would
then be notified
immediately through
its subscription. This
would trickle down
to the appropriate
progeny via the
pub/sub channels in
each instance

Once the root job is initialized, it may become the de facto interface for users to the system,
i.e. the instance within job 0 may provide the interface for all users of NGRM at a site for job
submission, queries, and other RM-related work. In this case, jobs are submitted to the root job’s
API and are inserted into the job database as described in Section 6.4.3, and the job 0 scheduler
will prioritize and schedule these requests.

In our system, however, this is not the only scenario. The flexibility of the unified job model
allows a site to invoke sub-jobs of job 0 and reference those jobs as respective interfaces to subsets
of resources within a datacenter. For instance, to run in a more traditional mode, a centerwide
root job could spawn one sub-job for each cluster within a datacenter. These cluster-specific jobs
would then act as separate “resource managers” for these clusters, and could therefore have different
scheduler plugins loaded, a different set of users, or other separate policies. However, even in this
case, it is important to note that job 0 still spans all the resources in the center, so job data is
eventually collected in the top-level job repository, all resources in the center are configured in a
singular resource inventory, and a centerwide runtime and monitoring environment exists for use by
administrative tools.

6.5.2 The NGRM Job: Job n

As explained in the sections above, a job requests in NGRM are always submitted to an existing
NGRM job via the instance API. This job request is passed through a set of configurable plugins
which check the validity of, and make any modifications to, the new job request. If the request is
valid, and the requesting user has submit access to this job, then the job request is inserted into the
job database as described in section 6.4.3 above.

After the scheduler has determined the job should run and resources have been selected for the
job, a new comms session is spawned, and the CMB intiates the new instance for this job, which we
call job n. The instance is initialized using the universal resource description language of NGRM
which will describe the set of resources assigned to the job. Once the new instance is initialized, it
will subscribes to its parent instance (for notification of upstream resource changes, and other items
“of interest”), and the parent subscribes to the child instance. Finally any script or interactive

27

D
R
A
FT

Figure 10: Resource Manager High Level View

session is spawned within the job, with configuration such that RM utilities and APIs will utilise
the URIs specific to the job n instance. TODO: Flesh out the

details here. Need to
describe batch vs in-
teractive vs “pure al-
location” jobs.

Upon initialization, ownership of job n is set to the submitting user, and that user would typically
be the only user allowed access to the runtime environment of the job. However, the list of users
with submit access and runtime access is configurable and may be set after job invocation or during
the job request itself.

It is also not necessarily the case that the instance invoked by the job – that is, the set of
daemons and code that provide the RM instance features in NGRM – are of the same versions as
the parent job. In fact, part of the design of the self-hosting, unified job model of NGRM is to allow
not only rolling updates of software, but to allow future and experimental versions of the software
to be deployed as an NGRM job. This means that the version of the software system used within a
job may be user-selectable, or for privileged users a version of the tool could be loaded directly from
a build directory. A study of the se-

curity implications of
these features is out-
standing. However, it
is expected that cer-
tain pieces of software
would be deemed safe
to allow blanket per-
job user replacement
rules. (e.g. the sched-
uler)

Once job n is running and fully initialized, user processes have access to a rich and powerful
private resource management system for use in directing their computational work. Information
about resources can be gathered and stored in the local resource database, which in turn can direct
and optimize behavior of the in-job scheduler. Chained jobs and workflows can be inserted into
the local job database and child jobs can be created which in turn use the power of their local RM
system to manage related work. Every sub-job and parallel invocation is captured in the local job
database, along with monitoring data streams and other job data which can be used in postmortem
analysis and job efficiency studies.

A graphical representation of a typical set of jobs showing jobs running within jobs and their
respective instances is shown in Figure 10.

6.5.3 Lightweight Jobs

As described earlier, lightweight jobs (LWJ) are similar to normal jobs in the NGRM system, but
they do not result in a new instance. Thus, these jobs run within the current instance and utilize
the same scheduler, resources, and other instance specific data. It is expected that lightweight jobs
will be the vessel by which parallel applications are launched and managed, and this topic will be
explored further in the workload and runtime section.

For the RM instance within the job, all the same steps are taken when handling a lightweight
job vs. a normal job. There may only be a flag or tag that indicates this job will be lightweight

28

D
R
A
FT

instead of requesting the instantiation of a full job. This approach is beneficial because it reduces
code duplication in handling the distribution and management of processes local to the runtime of
the current job. Another benefit of treating lightweight jobs as a special case of regular jobs is that
the lightweight job information will be captured in the job database and preserved, just as any other
full job.

One final note about lightweight jobs is that it will likely be necessary to allow lightweight jobs
instantiated on the system to overlap. For example, one LWJ might be a parallel MPI application
running across all nodes of a job, and second, overlapping LWJ would be a parallel debugger session
used to attach to one or more of the processes in the original job. Again, both of these jobs would
be captured in the job database. TODO: What hap-

pens when a LWJ
request comes from
within a LWJ. I think
it is Dong’s assump-
tion that LWJ’s have
their own hierarchy –
so the current level in
the hierarchy would
need to be communi-
cated to the RM in-
stance, and the in-
stance would need to
manage that hierar-
chy.

It is assumed that the lifecycle management of LWJs will be handled at the level of the runtime
environment. It may not be possible in all cases to determine exactly when a LWJ is “complete”,
and it may be up to the user code creating the LWJ, or the runtime subsystem doing so on behalf
of the user, to explicitly notify the RM instance when a LWJ has completed.

6.5.4 Job End-of-Life Care

We will adopt a model from UNIX process management and have the parent instance ”reap” its
children. It is here that the job db from the child can be ”pulled” up from the child into the parent
job db. When instance 0 reaps jobs, this job data can be pushed up to its parent, i.e. the persistent
job repo. TBD – how to store

child job information
in the parent such
that the historical
lineage of the
jobs and sub-jobs
within the child are
preserved. Maybe
the reaping should
be abstracted down
in the comms layer
with callbacks to
allow the higher
level subsystems to
reap their analogs in
children.

In this model, historical job data makes its way up to the top-level job repository as child jobs
complete. Each ”running” job instance has information about its historical job lineage in its local
job db, so this information can also be queried directly from within the context of a job. (e.g. in
a DAT, if you want to only query information about jobs from the DAT, you can query the DAT
job instance. In fact, information about jobs from the DAT are not populated to the top-level job
repository until the DAT ”ends”)

We will define how jobs indicate that they are ”done” and need to be reaped. A DAT ”job” may
need to be killed and reaped at the end of its time limit. Normal batch jobs are complete when
the batch script running on the control node exits. A direct allocate/launch with WRAP would
be reaped when the processes being launched exit. A job may be forcibly killed by the user or an
administrator, at which point a depth-first recursive termination is issued. TBD – What hap-

pens to an active
job hierarchy when
the top-level job is
killed? What hap-
pens to pending job
requests when a job is
terminated? Killing
a job might result in
something like:

1. Freeze local
job db (i.e.
disallow
new job
submissions)

2. Terminate
and reap
children jobs

3. Kill local
tasks

Perhaps 2,3 could be
swapped or done in
parallel.

6.5.5 Job Fault Tolerance

While discussing job interactions, it rapidly becomes apparent that an important feature of the
NGRM job will be its tolerance of faults in the RM instance. If there is data loss within the
instance, then this may affect the data of all completed child jobs, since hierarchical data such as
the job database are generally collected in the parent after a reap operation. While fault tolerant
design is a goal of NGRM design and a topic of further study, we mention here some initial ideas
for job recovery after RM instance failure.

One possibility is to build the resource, job, and user databases on top of a distributed data store
with replication. The runtime environment of job will already contain a distribute key-value store,
so it may be possible to build a fault tolerant data store on top of that. With replication enabled,
the failure of a node on which the RM instance is running would not be fatal because the data could
be reconstructed from replicas.

Another proposal is to replicate data to other instances running in the system. For example, a
job could replicate data to its children and parent, and a lost instance could then be reconstructed
by the parent by querying missing data from the children. This method would require a systematic
method for determining location of child jobs without help from the parent, but it is expected that
this challenge is not insurmountable.

Because the impact of losing job instances while running may be large, in fact larger than in
some other RM software systems, our development should focus on testing this case, and ensuring
that there is no undesired data loss when an RM instance crashes or its host goes down should be
part of a routine test plan.

29

D
R
A
FT

6.6 Job Scheduler
chris-review: Plu-
gins described in
scheduling section
seem like they are
each pigeon-holed for
a particular function,
compared to SPANK
where one plugin is
called in different
contexts to provide
a suite of related
functions.

The NGRM Job Scheduler is responsible for scheduling computing resources to users’ jobs. Users
submit to the scheduler requests for resources to run their job. The scheduler implements manage-
ment’s policy to decide when and where to allocate the resources for each job.

This section summarizes the requirements for the NGRM Job Scheduler, a rough design which
meets those requirements, and a work breakdown structure for developing the scheduler component.

6.6.1 Motivation

Scheduling batch jobs across a collection of networked computing resources connected in a grid has
been a common paradigm for at least two decades. A batch scheduler receives users’ job requests,
selects a cluster for each job, then dispatches the job to that cluster’s resource manager to be
executed.

The NGRM Job Scheduler represents a departure from traditional monolithic “grid masters”.
The scheduler functionality will be a service provided by the NGRM’s job model. As such, the
scheduling activities will be distributed across the center’s resources and provide functionality not
available in any commercial or open source project.

NGRM Job Scheduler’s scheduling services will schedule jobs across resources in a computing
center without regard to current cluster boundaries. A job will be able to request resources containing
a common feature (like connectivity to the same high speed switch) or fitting within a limited power
envelope.

The NGRM Job Scheduler will support plugin modules that provide unique scheduling behavior
and job prioritization. Each job will have the option to independently load its own scheduling
plugin. In so doing, the NGRM Job Scheduler’s scheduling capabilities will range from scheduling
all resources in the center to scheduling jobs on dedicated resources (DATs) to scheduling LWJ’s
(job steps).

Most importantly, the traditional boundaries between a job scheduler and the resource manager
will be redefined under NGRM. Instead of a resource manager that manages every resource of a
cluster, the resource management services will be instantiated as part of the job and be restricted
to only the resources allocated to the job.

In order to continue to meet the needs of current users, the NGRM Job Scheduler must continue
to provide all the services that production schedulers provide. Our goal is to surpass our existing
schedulers in the following areas: performance, accuracy, reliability, resiliency, ease of use, flexibility,
security, diagnostics, and need for manual intervention.

6.6.2 Requirements

While a more detailed list of requirements is presented in A.3, the following provides an overview of
the functionality that the NGRM Job Scheduler will be expected to deliver.

Fundamental Requirements The following is the most definitive list of basic scheduling require-
ments. The job and resource repositories as well as the job submission facility are external to the
NGRM Job Scheduler. chris-review: Why

are ”job prioriti-
zation” and ”job
scheduling” inde-
pendent activities?
Shouldn’t prioriti-
zation just be one
aspect of scheduling?

• Prioritize each job

• Schedule each job based on its resource requirements

Further Scheduler Requirements In addition, more elaborate scheduling plugins will be pro-
vided to do the following:

• Support complex job dependencies, e.g. as in scientific workflows

• Backfill lower priority jobs whenever possible

30

D
R
A
FT

• Facilitate dynamic job growth and reduction

• Preempt running jobs to free up resources needed by higher priority jobs

• Calculate estimates of when each job will begin

• Provide scheduling answers to “what if” scenarios

• Scheduling different resources to a job over time

Policy Enforcement NGRM implements the center’s policies for providing access to its com-
puting resources. The following are responsibilities, traditionally associated with a batch scheduler,
that will be borne by the larger NGRM system:

• Reject job submissions for jobs which cannot or will never run

• Remove jobs that exceed time limits

• Enforce established limits on users, groups, projects (banks), etc

• Honor service level agreements and service quality requests

Organization Components The NGRM Job Scheduler functionality is broken down into the
following components.

Job Prioritization. This the facility for prioritizing jobs based on potentially multiple factors.
The system shall offer a job priority plugin framework to allow custom algorithms for determining
job priority. The priority of each queued job must be continually recalculated as the queue of jobs
and workload factors change.

Job Scheduling. For each job removed from the prioritized queue, computing resources must
be reserved and eventually allocated. The collection of resources to schedule must be available from
the resource inventory with the state and status of each resource updated in real-time. The scheduler
must honor multiple resource requests simultaneously as it seeks to allocate cores, GPUs, nodes,
switches, bandwidth, power, etc. chris-review:

There should be
multiple levels of
preemptability.

If users can add their own data to the provenance database, Here too, the system shall offer
a plugin framework to support custom algorithms for scheduling jobs to compute resources. An
essential scheduling algorithm which must be included is backfill scheduling (lower priority jobs are
scheduled to run if they do not delay the start of higher priority jobs). In addition, qualities of
service must be implemented in the scheduler such that running jobs can be preempted if needed to
free up resources for more important jobs. This involves not only selecting the best resources for a
job, but also identifying the set of jobs to preempt when such a policy is enforced.

The output of a the job scheduling process is a schedule of which jobs are mapped to which
resources over a future, rolling period of time. A by-product of this schedule is a projected start
time for every queued job that is included in the schedule.

31

D
R
A
FT

RFC 5424 syslog SNMP get/trap

NGRM

Figure 11: The NGRM monitoring system interfaces with an external enterprise monitoring system
using SNMP, and with a persistent log database using RFC 5424 structured syslog.

7 Monitoring

The primary function of NGRM’s integrated monitoring is resource health tracking. This information
is required in real time by schedulers and runtimes to ensure that work is not launched on broken
resources, and that when things do go wrong, appropriate action can be taken. In addition, NGRM
monitoring can be extended and customized by sys admins and job owners to cover additional
monitoring needs that may be site, hardware, or job specific (A.3 req. 3.1). Ideally NGRM will be
flexible enough to meet all monitoring data aquisition requirements on compute nodes, where our
model is to synchronize monitoring interruptions within each job and allow the system noise impact
of monitoring to be tuned by the job owner (A.3 req. 3.0 and 3.2).

As shown in Figure 11, monitoring interfaces with an external log database and enterprise mon-
itoring system. The log database is intended to be a comprehensive, schemaless, site-wide store
that will support a high insertion rate, large storage capacity, and scalable queries. As a record of
all events in the data center, it will facilitate postmortem analysis, enabling the correlation of job
data with other interesting occurrences that might not have been recorded in the job database, or
anticipated as something the job would normally ”care” about. Users will be permitted to inject
application-level information into this store and perform analysis with the system-level context there
as well (A.3 req. 3.6).

The enterprise monitoring system is the mechanism used by operations center staff and system
administrators to monitor site systems which might include NGRM as well as facilities, network
devices, storage appliances, and non-NGRM clusters. This system is likely to already be in place at
a site, thus common protocols are chosen to reduce the effort required to integrate with NGRM.

Monitoring state for a job is stored in the resource database, and fault events are recorded in the
job database. These databases provide extensibility and persistence features described in Section 6.4.
Monitoring follows the NGRM job recursion pattern, and is layered upon the comms framework,
which assigns each job a unique domain name within the NGRM private DNS namespace. Live
monitoring data can be obtained by using the resource manager API to query the resource and job
databases on the job’s control node, using the job’s domain name.

Some applications and runtimes will require notification when system faults occur. For example,
when a node that is part of a job crashes, or is about to crash, some applications may be able
to request a replacement node and recover. To facilitate sharing of fault information, NGRM will
implement a fault notification service. Applications and runtimes use the fault notification service
to produce and consume fault events within the job. In addition, a gateway on the job control node
allows software within the job to subscribe to faults generated externally (such as by a file system
used by the job), and to publish certain faults that may be of interest to others. Faults can change
resource health state maintained in the resource database. The fault stream produced by a job is
logged in the job database and can be considered part of the job’s provenance record.

NGRM Monitoring thus consists of the plugin framework, log database interface, fault notification
system, and enterprise monitoring interface. Each of these parts is discussed below.

32

D
R
A
FT

Figure 12: Monitoring follows the job hierarchy. Control nodes (red) store resource status infor-
mation in the resource database and optionally export it via SNMP. The monitoring plugin stack
(jigsaw pieces) is customizable for each job. Plugin execution is coordinated by the job’s scheduling
trigger event.

7.1 Plugin Framework

The monitoring plugin system provides a mechanism for arbitrary code contained in a user- or
admin-provided plugin to be periodically executed across a job. The primary function of a plugin
is to update resource health information in the resource database at the control node, using the
reduction network. Plugins may also publish fault events and send data to the log database. A
default plugin stack is inherited by a job from its parent. The set of active plugins as well as the
trigger event period which synchronizes execution can be tuned to a degree by the job owner. The
plugin framework is depicted in Figure 12.

Plugins have three main functions: data source, data reduction, and data sink. Depending on
the role of a node within the job or its position on the reduction network, one or more functions may
be enabled on the node. For example, a compute node may run only the data source function, while
the control node may run only the data reduction and data sink function. Any function can publish
fault events and send data to the log database in addition to performing its role on the reduction
network.

The data source function is driven by the scheduling trigger. Its its purpose is to perform the
first level of sampling or testing of an object that is being monitored, and inject the resulting data
into the reduction network.

The data reduction function accepts data coming from upstream source or reduction functions
of the same plugin. Its purpose is to reduce the data in some way to improve scalability. Reduced
results are sent downstream, eventually to the plugin’s sink function. The execution of the data
reduction function is driven by incoming data and timers, not by the scheduling trigger.

The data sink function accepts reduced data from the same plugin on the reduction network.
Its main purpose is to update resource state in the resource database, although it could dispose of
the plugin’s data in other ways such as by interfacing directly with a tool, or updating a database
supplied by the job owner.

Special care must be taken in the design of the plugin execution environment to minimize dis-
ruptive impact on compute nodes. For example, some monitoring systems like Chukwa [42] require
data source functionality to execute in a Java VM, which would have an unacceptably high memory
and scheduling impact on some workloads. Others like Nagios [4] rely on shell scripts that may have
a similarly high or unpredictable impact. NGRM monitoring plugins should leverage a lightweight
execution environment such as an embedded Lua [32] interpreter.

7.2 Log Database Interface

Monitoring interfaces with an external log database intended to be a comprehensive, schemaless, site-
wide store that will support a high insertion rate, large storage capacity, and scalable queries. As a
record of all events in the data center, it will facilitate postmortem analysis, enabling the correlation
of job data with occurrences that were not actively tracked by the job during its execution, thus not
part of the canonical job record.

33

D
R
A
FT

The log database, although implied by our requirements, (A.3 req. 3.6), is “outsourced” by
NGRM with a generic interface so that sites can choose the technology to use to build such a
system. Some sites may prefer proprietary systems such as Splunk R©, while others may wish to build
one from the many horizontally-scalable NoSQL databases such as CouchDB [9] or mongoDB [41].
Still others, operating at modest scale, may employ a traditional flat file or relational database. At
LLNL, an in-progress Laboratory Directed Research and Development feasibility study on HPC log
analytics [24] may spawn a separate project for the log database.

The syslog protocol, modernized in RFC 5424 [25], includes a provision for STRUCTURED-
DATA content, an easily parsed format that is user-extensible. Since log data may be voluminous at
times, and scalability may require a distributed log database implementation, it is not desirable to
use the NGRM reduction network to funnel all log messages through the single control at the root of
the job. Instead, we allow monitoring plugin functions, or applications through the standard syslog
API6, to inject data directly into an orthogonal syslog transport. Syslog implementations already
have standardized filtering, forwarding, and security capability so there is no need to reimplement
this within NGRM.

To improve scalability in some situations, the reduction network can be employed without nec-
essarily resorting to control node funneling. A monitoring plugin can log from the function (source,
reduction, or sink) that gives the right amount of reduction/funneling for the data managed by that
particular plugin.

Limiting unchecked log growth While it is well and good to design a capability for scalable,
persistent logging that is available both to system software and user applications, growth of the
log database should not be completely unbounded and unmanaged. Two features could ease this
problem: a circular debug log buffer, and a log insertion quota.

Syslog verbosity is tunable by selecting the level of each facility that is to be logged, from
LOG EMERG (system is unusable) to LOG DEBUG (debug-level message). Usually system log
levels are set somewhere in the middle, but that means valuable log information leading up to
a failure is sometimes not available. A solution to this problem is to create a local circular debug
buffer that logs at the maximum verbosity, and tie the logging system into the job’s fault notification
service. If a fault occurs in a particular facility, the circular buffer can be dumped to the log database;
otherwise the data is discarded as it is overwritten.

Some log databases such as Splunk R©, have licensing based on ingest rates. Such a system, or
indeed other systems that we wish to limit, could be operated with consumable resources held by the
resource manager. For example, a job could request a certain quota of log messages for the duration
of its run. When that number is exhausted, a fault occurs. This enables the NGRM scheduler
to ensure that the ingest rate of the log database remains under control, while giving users a new
capability and a motivation to implement in-situ data reduction.

7.3 Fault Notification System

The CIFTS group has argued [29] that a wholistic, full-system approach to fault notification is
required in order to enable fault-tolerant applications and runtimes to make good decisions when
things go wrong. For example, faults occuring on Lustre file system servers may be of interest
to a program controlling a suite of application runs, but traditionally, file system failures are not
reported in the application domain except through system call failures. NGRM addresses this need
with a fault notification system based on the comms layer’s reduction network and PUB-SUB event
notification service. Fault notifications are published (by monitoring plugins, applications, etc) to
subscribers within the job. A fault gateway allows configured local faults to be published externally,
and configured external faults to be published locally.

We have adopted the CIFTS Fault Tolerance Backplane API [5] (FTB-API) an emerging standard
for fault notification available in some MPI implementations and other software as the programming

6It is not clear that any available syslog API’s handle RFC 5424 STRUCTURED-DATA except as an opaque
component of a textual log message. If one cannot be located, likely we will want to write one to make management
of structured data easier on users and ourselves.

34

D
R
A
FT

interface for the fault system. We will use CIFTS event namespace conventions as well. This choice
reduces the overhead of porting fault-tolerant runtimes and other software between systems, and
allows FTB-API based implementations to be immediately functional on NGRM.

While the CIFTS reference implementation defines a backplane architecture for fault notification,
our fault notification system leverages both the hierarchical relationship between jobs (local vs global
fault scope), and the reduction network within a job (reducing duplicate or same-root-cause faults)
to achieve greater scalability and more intelligent fault processing. Faults can be directly published
across the job via the comms event notification service, but when data reduction is desirable, mon-
itoring plugins can be employed to route faults through a reduction sieve to the control node where
they are published in processed form. Monitoring plugins are also employed when the occurence of
a fault needs to affect resource health state in the resource database.

The fault gateway, running on the job’s control node, integrates the job’s fault notification
domain with the system’s. It re-publishes a configurable set of local faults to the parent job, which
forwards them to its parent, and so on, reaching subscribers anywhere in the system. Conversely,
the fault gateway subscribes to a configurable set of global faults in the parent job and re-publishes
them locally. In this way, external faults ”of interest” to any job become part of the job’s local fault
domain.

The job’s fault stream thus becomes an important record of anomolous conditions occuring within
the job and those of interest occuring outside the job. It is stored in the job database.

7.4 Enterprise Monitoring Interface
jeff-review: MyLC
and the new HM will
both be providing no-
tifications for various
events, so we need to
develop a centralized
mechanism that can
support this and
make sure NGRM
can be plugged-in
as an event source.
(Sounds like the
pub-sub model Mark
described would work
nicely. jg: FIXME:
This section describes
how NGRM can act
as an SNMP event
source (trap) and
provide SNMP state
transfer (getbulk) to
external monitoring.
Missing is the ability
to go the other way,
e.g. get events and
state on externally
monitored objects.
jg: FIXME: Other
external protocols
could be supported
by other gateway
implementations.
The gateway is just
a thin layer between
resource db and
external protocol
engine.

Site operations centers and system administrators use monitoring to track problems that may require
someone’s intervention, and to gain insight into how the systems they are responsible for are being
used. The systems that are monitored may include clusters as well as facilities and networking
equipment. NGRM monitoring gathers resource health information that is an important component
of that view, and indeed aims to replace other compute node resident monitoring frameworks in
an effort to synchronize monitoring interruptions across jobs. Although NGRM will provide tools
for viewing its internal operation including resource health, it must also export resource health
information to external enterprise monitoring software to allow NGRM to be integrated into a site-
wide monintoring strategy, perhaps already deployed. We accomplish this using our hierarchical job
model to ensure that actionable fault information is available in the root job resource database, and
develop a gateway to export this information to external enterprise monitoring software.

The health state of resources is maintained in the resource database of each job. This state is
initialized from the parent resource database at job inception and is transferred back to the parent at
job teardown. In addition, some fault events within a child job are published to the parent and thus
may alter resource state in both the parent and the child (perhaps driven by the need for enterprise
monitoring to see them). Therefore, although each job is given a delegation to monitor the resources
allocated to it, resource health state does, with varying degrees of latency, eventually recurse to the
root job’s resource database, thus it is appropriate to interface enterprise monitoring there.

SNMP [47] is the de-facto standard protocol for enterprise monitoring. An SNMP gateway that
speaks both the resource database API and SNMP will run on the root job’s control node. State can
be pulled out of NGRM via SNMP GET and GETBULK requests. After an initial state transfer,
state changes can be pushed by NGRM via SNMP TRAP requests. This model supports multiple
external management entities. Theoretically the SNMP gateway could run on any job, if desired.
For example, long running service entities like Lustre server clusters could be ”peeled off” of the root
instance, assigned to a child job, and monitored separately. Practically speaking, jobs configured
for external monitoring should be long lived.

A base set of NGRM management data will be defined in an NGRM enterprise-specific man-
agement information base (MIB) module. The set of data exported by the SNMP gatway can be
extended by adding new MIBs that map new SNMP objects to resource database objects.

35

D
R
A
FT

Term Description
u the containing job (universe)
ru the overall resource bound the scheduler set for u
j an LWJ in u
parent(j) j’s parent in the LWJ hierarchy (parent of top-level LWJs is u)
cj resource criteria for j
dj some data to be recorded by j
rj compute resources allocated to j where rj ⊆ rparent(j)

cnewj criteria for additional resources for j
rnewj additional resources where rnewj 6⊆ rj and rnewj ⊆ rparent(j)

ex a run-time environment where ex ∈ E = {e0, e1, ..., em−1}

Table 2: Definitions for Basic WRAP Service Parameters

8 Workload Run-time and Placement
kim-review: WRAP
section uses differ-
ent terminology than
other sections.

The Workload Run-time And Placement (WRAP) thrust area concerns all aspects of executing
transactions within a single job. While the scheduler sets the overall bound for both resources and
time that a job can use, it does not dictate how to execute the various transactions of the job. Thus,
it is WRAP’s responsibility to ensure that these transactions get executed most efficiently within this
scheduler-set bound. To embody NGRM’s new resource management paradigm, however, WRAP
must provide the run-time services beyond what the traditional paradigm requires. In addition to the
traditional services such as bulk process launch and management, WRAP must provide advanced
services to support conceptual models such as job hierarchy and resource elasticity described in
Section 3.2.

8.1 Lightweight Jobs and their Hierarchy
chris-review: Why
do we need a hierar-
chy of LWJ’s? Are we
reinventing the same
stuff we already built
for jobs? Can’t we
just do LWJ stuff
with jobs?

As explained in Section 4.1, the traditional approach models various transactions that a job executes
simply as a set of compute steps—e.g., job steps. As with other limitations of the traditional
paradigm, this simple model is ill-suited for designing our run-time services after it. Instead, WRAP
requires a more powerful and flexible mechanism to organize and group the processes that a job
executes in accordance with their distinct functions or purposes. For example, all of the parallel
processes of an MPI application may form a single compute function; all of the distributed processes
of a parallel debugger program may form a tool function that should be logically separate from the
compute function; further, the compute function may refine itself into several sub-functions to serve
independent power capping functions [45] to different subsets of its processes.

We use the notion of the lightweight job (LWJ) to realize the new model. An LWJ is a group
of processes with a distinct function that has its own resource confinement that is a subset of the
overall resources assigned to the job. The most significant difference between the LWJ and the full
job is that an LWJ can share the compute resources with other LWJs of the same job. Further,
the processes grouped by an LWJ can be refined into smaller LWJs, and thus LWJs also form a
hierarchy. Effectively, this bridges our general job hierarchy model into the fine-grained scope of
“within-job,” following the same “parent-child” rules stated in Section 3.2.

LWJs are the main means to provide group identifiers to WRAP services so that WRAP can
manage any meaningful set of processes as one coherent object. An LWJ may use a WRAP service
to relate itself to another LWJ simply by passing the target LWJ’s identifier. This would be a
common operation for tool LWJs as they often want to locate, synchronize with, and attach to MPI
processes grouped through a compute LWJ. Similarly, WRAP may move a portion of the compute
resources (e.g., maximum power use) that one LWJ has been using to another LWJ. That forms our
basis to enable our elasticity model at the within-job scope.

36

D
R
A
FT

8.1.1 WRAP Service Primitives

Table 2 defines the basic elements relevant to WRAP run-time services. For example, j represents
an LWJ in the hierarchy within the job, and rj denotes the compute resources to that this LWJ
is confined. Using these as our foundational parameters, WRAP now defines the following service
primitives to enable the new paradigm.

• alloc(j, cj): allocates rj to j from rparent(j) according to cj .

• realloc(j, cnewj): allocates rnewj from rparent(j) according to cnewj and updates rj such that
rj = rj ∪ rnewj .

• release(j, subset(rj)): releases a subset of rj to rparent(j) and updates rj such that rj =
rj − subset(rj).

• contain(j, ex): contains j in ex.

• launch(j): spawns, maps and binds processes of j on rj according to cj . If this is an incremental
launch, this spawns and binds only additional processes.

• destroy(j): kill processes of j running on rj . If this is a partial destroy, this kills only a subset
of processes.

• bootstrap(j): bootstraps processes of j across rj including dissemination of connection infor-
mation. If this is a partial bootstrap–e.g., additional processes have been spawned or some
processes have been killed, it only adjusts j for the change

• split(j,marker): creates new child LWJs that includes all of the calling processes of j with
the same marker.

• record(j, dj): records j’s attributes such as its cj , fingerprint for ex, and arbitrary information
(dj) about j.

• query(j): queries about j.

• sync(jk, jl): putting an LWJ, jk, into a known state and providing another LWJ, jl, with jk’s
identify info.

8.1.2 Higher-Level Services

Composing these primitives allow us to further build high-level services such as the following. The
primitives and high-level operations are our conceptual tools to test WRAP services to a myriad of
requirements and use cases of NGRM.

• init(j, cj) = < alloc(j, cj), launch(j), bootstrap(j) >

• cont init(j, cj , ex) = < alloc(j, cj), contain(j, ex), launch(j), bootstrap(j) >

• grow(j, cnewj) = < realloc(j, cnewj), [launch(j), bootstrap(j)] >, where launch and bootstrap
are optional because they are only needed when grow needs to launch additional processes.
For instance, if cnewj is a power bound increase request, these operations are unnecessary.

• shrink(j, subset(rj) = < release(j, subset(rj)), [destroy(j), bootstrap(j)] >, where destroy
and bootstrap are optional because they are only needed when shrink needs to kill some
processes of j.

• monitor(j, jmon, cj) = < init(j, cj), init(jmon, cj), sync(j, jmon) >, where the first init should
be passed a special flag to cooperate with the subsequent sync operation.

• log(j, jlogger, cj) = < init(j, cj), init(jlogger, cj), sync(j, jlogger) >, where the first init should
be passed a special flag to cooperate with the subsequent sync.

37

D
R
A
FT

Parent’s
overlay
network

Dist KVS

Process mgr

p p

Bootstrap APIs

alloc (𝑗𝑘)

d

d
d

d

d d

d

d

𝑗𝑘 overlay
network

Figure 13: Base WRAP Architecture

8.1.3 Elasticity Support

The hierarchy of LWJs allows varying grain sizes of control for both process counts in sibling LWJs
and resource distribution across these LWJs. This has many interesting properties. For example,
a compute LWJ can further refine itself into smaller LWJs representing subsets of processes with
independent resource confinement domains. As these smaller LWJs allocate, grow or shrink within
the resource limit of the parent LWJ, diverse set of resources including consumable ones like power
can be unevenly or evenly distributed across these LWJs. In the case of power management, LWJs
that are not in the critical path in the parallel execution can reduce their power bound and return
the leftover power resources to its parent. The parent LWJ can then use the returned resources in
granting the grow requests that come from other LWJs that are in the critical path. This mechanism
can support emerging power-aware computing that may want to cap power use differently and
dynamically across different groups of MPI processes based on their execution patterns.

8.2 WRAP Software Architecture

In this section, we will detail our WRAP software architecture and mechanisms that are needed to
implement the proposed WRAP services. We will first describe the base architecture that demon-
strates the basic WRAP capabilities of executing an LWJ on a set of compute nodes, as our base
resource type. Next, we will describe how we can extend this architecture to enable other advanced
services such abilities to synchronize two independent LWJs, to grow compute node resources allo-
cated to an existing LWJ, and to handle other types of resources such as power.

8.2.1 Base Architecture to Execute an LWJ

Figure 13 shows our base software architecture that can provide a single LWJ (jk) with WRAP
service primitives: alloc(), launch(), bootstrap(), contain(), record(), and query(). It assumes that
the overlay network for parent(jk) already exists and that this existing network can support highly
scalable, resource-efficient communications for jk upon granting the alloc(jk) request. Our archi-
tecture requires that any overlay network instance recursively supports communications of a child
LWJ either through an explicit instantiation of a separate overlay network or through the existing
overlay network. However, the latter model requires to support a growth and/or reconfiguration of
the existing network to be elastic. WRAP then uses the overlay network for jk as well as a key-value Note that during the

detailed design phase,
WRAP and Comms
Framework thrusts
will co-design the ac-
tual communication
mechanisms.

store to serve scalable process management to jk’s processes. The following explains distributed
key-value store mechanisms and key process management services in more detail.

Distributed Key-Value Store (DKVS) provides a scalable mechanism by which the processes
of jk can share arbitrary information in a key-value pair amongst them. Conceptually, DKVS

38

D
R
A
FT

represents a global key-value tuple space and any process of jk can store its data by associating them
with a unique key. To be memory-efficient, however, DKVS must store the data in a distributed
manner. Thus, the overlay network of jk must be capable of hashing the key to route its tuple to
the home key-value store location. Global synchronization mechanisms such as collective fence will
be provided to force memory consistency of DKVS across all processes.

Because our overlay network will have built-in routing schemes to support requisite distribution
schemes, each home database itself can be a simple in-memory KVS. It is for this reason that we we
will first consider a readily available, simple database implementation such as Redis. Depending on
our overlay network topology, KVS can be fully distributed across all of the overlay network daemons.
An example topology to support the full distribution is a “forest” with log(N) connections wherein
any daemon can be the root of a binomial tree.

Our DKVS will support a hierarchical tuple space for tighter data encapsulation per LWJ, which
can further lead to a higher level of protection. More specifically, when an LWJ is allocated, a new
name scope for that LWJ will be created in the DKVS, and information on the resource allocated to
that LWJ will be stored as part of the default record service: e.g., jk::resource→ < core count(1024),
power bound(100kw), ... >. This information is accessible by jk as well as its immediate child LWJ
jk+1. Similarly, when a daemon creates an MPI rank process, it will add the personality of that
process under this LWJ name scope such as jk::rank(128) → < host IP, pid, executable path,
... >. Finally, DKVS will allow any process of the LWJ to store arbitrary information as part
of record(jk, djk

). All information stored with record will be pushed to parent(jk) when jk is
destroyed. Thus, the information will ultimately find its place in a persistent repository through
the job hierarchy. In addition, DKVS will further support query, providing the calling process with
underlying resource allocation information.

Scalable Process Management (ProcMan) Services can be implemented using the overlay
network and DKVS as their basic scalable mechanisms. The scalable process management run-time
services includes, but are not limited to, the following:

• Bulk Process Creation and Stop: The head daemon of the overlay network receives a
process creation request through launch(jk) and propagates that command to the rest of
the daemons in O(log(N)). Upon receiving the request, each daemon forks and execs local
processes. If the request contains an optional sync assist flag, the daemons stop the processes
immediately after the creation to support a subsequent sync() issued by another LWJ. In either
case, the daemons store information on the created target processes such as their process id,
executable path and hostname, into the DKVS.

• Scalable Propagation of Environments: The head daemon receives the environment vari-
ables list and propagates that to the rest of the daemons in O(log(N)). The daemons then
concatenate this master environment variables list to their local environment variables and
export them to their processes. If the head daemon receives an optional contain request, that
request is also being propagated. The specified containing-environment is used to contain the
target processes.

• Process Mapping, Binding and Confinement: The daemons provide the newly created
processes with topology information to support their mapping, binding and confinement to
the underlying resources. The daemons retrieve the topology information from the key-value
store.

• Scalable stderr/stdout Handling: The daemons receive stderr and stdout from their
processes and scalably push and merge them through a tree in the overlay network towards
the head daemon. Output aggregation techniques will include ways to reduce the output
progressively at every merge step in the tree either by applying a readily available reduction
filter or a user-provided one.

• Scalable signal/stdin Forwarding: The head daemon receives a UNIX signal or an input
through stdin and scalably propagates it to a specified set of daemons through a tree in the

39

D
R
A
FT

Parent’s
overlay
network

d

d
d

d

d d

d

d

𝑗𝑙 overlay
network

alloc (𝑗𝑙)

p p

Bridge
Sync

Dist KVS

d

d
d

d

d d

d

d

𝑗𝑘 overlay
network

Figure 14: Architectural support for sync(jk, jl)

overlay network in O(log(N)). Upon receiving the signal or stdin, each daemon routes it to
their corresponding processes.

• Scalable Process Termination Detection and Analysis: When one or more processes
in the LWJ are normally or abnormally terminated, their home daemons detect the event and
notify the head daemon through a tree in the overlay network. A time-out filter can be used
at every step of the tree network to merge the return codes and, if abnormal, the stack traces
of the terminated processes. Upon receiving the aggregated event, the head daemon will clean
up the entire LWJ and also present to the users concise information about the termination.

A Unified Bootstrapping Mechanism will be used to ease integration of various types of
LWJs. DKVS will be designed to support a wide range of existing bootstrap interfaces for distributed
software including PMI 1 and 2 [11], PMGR Collective and COBO, LaunchMON [8] and LIBI [26].
With support for these interfaces, WRAP will be able to bootstrap various types of LWJs including
a myriad of MPI implementations, tools communication infrastructure such as MRNet and also
end-user tools such as STAT, TotalView and OpenSpeedShop. Specifically, the PMI layers will be
a very thin layer on top of our DKVS implementation. We will support PMGR Collective, COBO,
LaunchMON, and LIBI such that each created process opens up an ephemeral TCP port and store it
as jk::rank(128)→ < host IP, port >. Then, each process in the binomial tree in these bootstrappers
will simply find the connection information of its parent as well as its children using their ranks as
the keys.

8.2.2 Architectural Support for Synchronizing LWJs

WRAP services must have an ability to relate an LWJ to another LWJ through sync. For example,
a tool may need to be co-located with an MPI program and attached to its processes. Thus, we
must extend the base architecture to support this concept. As shown in Figure 14, when alloc(jl)
is granted for a new additional LWJ (jl), the parent overlay network instantiates another overlay
network for jl and helps manage the processes of jl in the same manner as the base case. To support
sync(jk, jl), however, a connection needs to be made between jl’s overlay and jk’s overlay network.
For this purpose, we introduce the concept of bridge. The bridge allows processes of jl to be able
to access DKVS of jk, which includes the mapping of the global MPI rank of a process of jk to
its host name, pid, executable path [18], information necessary for jl to locate all of jk’s processes.

40

D
R
A
FT

Parent’s
overlay
network

d

d
d

d

d d

d

d

𝑗𝑘 overlay
network

realloc
(𝑗𝑘)

Bridge

Dist KVS

d

d
d

d

d d

d

d

𝑗𝑘 overlay
network

p
p

Figure 15: Architectural support for grow(j, cnewj)

Alternatively, if the existing overlay network of jk is capable of allocating and managing a new sibling
LWJ within itself, the need for a connection between two overlay network and DKVS is eliminated.

8.2.3 Architectural Support for Growing Compute Node Resources

WRAP services must have an ability to grow the compute node resources that an LWJ (jk) uses
by reallocating an additional set of compute nodes from the resources allocated to parent(jk) and
launching and bootstrapping additional processes across them. Figure 15 shows the architectural
support for this elasticity. The scheme is essentially the same as that of sync. Upon granting a
reallocation of rnewj , parent(jk)’s overlay network instantiates an overlay network across rnewj

and connects it to the existing overlay network of jk. The bridge support is again central for the
connection. Additional processes launched through the new network will be able to access the DKVS
associated with the existing jk name scope. Conversely, DKVS associated with these additional
processes will be made available to the existing jk. Alternatively, if the existing overlay network
of jk is capable of allocating and managing these additional processes within itself, the need for a
connection between two overlay network and DKVS is eliminated. However, the existing overlay
network of jk must be capable of growing and reconfiguring itself to join the additional compute
nodes.

8.2.4 Architectural Support for Power as a Resource Type

As our generalized resource model will use the power bound as a resource type, WRAP services must
have an ability to allocate, grow or shrink a power bound on an LWJ as well. As j will get the
power bound allocated to it, a power capping mechanism like RAPL [45] can be used to set the
power bound of the allocated compute nodes.

The basic scheme computes the per-node power-bound average and sets that average bound
on each compute node. For more advanced power-aware computing, subsets of processes will be
assigned to new “power capping domain” LWJs using split(). The new power capping LWJs will
independently issue grow() and shrink() operations on the power bound as the resource type. This
will allow the distribution of power bounds across the compute nodes to vary while still providing
the overall power bound guarantee. These new LWJs will create new name scopes in the DKVS
under their parent name scope: e.g., jk::jk+1::resource → < size(128), power bound(12.5kW) >.

41

D
R
A
FT

8.3 Component-Wise Work Breakdown

In this section, we summarize the requirements and work items for the major components of the
proposed WRAP system. Note that this sub-

section is optional
for reviewers to read,
as it describes some
work breakdowns.
But I’m leaving
this sub-section so
that reviewers may
gain further insight
into what need to
be implemented to
support the proposed
WRAP architecture.

8.3.1 Overlay Network and Infrastructure Requirements

The heart of WRAP lies in scalable and flexible overlay network support. The overlay network’s
attributes that WRAP requires include:

Note that the
network requirements
still need to be
reconciled with
section 5.4.

• an ability to support our elasticity model efficiently and scalably through expanding and
shrinking compute nodes and LWJ processes launched on them;

• an ability for an arbitrary head daemon to broadcast or multicast data to a set of other
daemons through a binomial or binary tree with O(log(number of daemons));

• an ability for an arbitrary head daemon to aggregate data sent from a set of other daemons
through the binomial or binary tree with O(log(number of daemons));

• an ability to allow both preset and custom-made reduction operators to reduce the aggregated
data along the tree;

• an ability to control data aggregation and reduction synchronously with a mechanism to set
an arbitrary time-out threshold: zero time-out means pass-through; infinity time-out means
global synchronization; and in-between means partial synchronization with varying degrees;

• an ability to route a key-value pair efficiently and scalably by automatically hashing its key to
find its home DKVS server in support of get/put and global memory synchronization opera-
tions.

8.3.2 Process management

To support scalable process management service described in Section 8.2.1, the following components
need to be investigated, designed and implemented:

• an extensible communication protocol that allows our process manager to conduct command
and control for all of its services;

• a common data aggregation and reduction framework, techniques and API;

• process management service components that make use of the communication protocol and
aggregation and reduction framework/API and expose the services through high-level APIs;

• executable commands such as an LWJ launcher that combines the service components to
implement certain types of process management services for end users;

• topology-aware process binding and mapping components as well as communication mapping
APIs that client software can use for efficient mappings between its communication patterns
and the topology.

8.3.3 DKVS

DKVS requires the following components:

• name scoping specification and API;

• direct get/put methods on a readily-available key-value server;

• remote get/put methods on distributed key-value servers by integrating servers to the commu-
nication infrastructure;

• synchronization mechanisms and APIs that guarantee memory consistency across the dis-
tributed servers.

42

D
R
A
FT

Work Item Description Dependency Deliverable

Protocol design design/prototype procMan comm. co-design paper and reviewcommand/control comm. protocol

Aggregation/reduction design design/prototype aggregation comm. co-design paper and reviewreduction framework and APIs

DKVS name scoping design design/prototype name scoping comm. co-design paper and reviewspecification and APIs

Key-value store investigation
evaluate key-value store servers

none finding summaryvia direct put/get methods using
bootstrap and MPIR emulation

Power controller investigation investigate Intel RAPL RM design paper and reviewand ways to control power bound

Table 3: Phase 1 BBB design milestones and deliverables

8.3.4 Bootstrap Interfaces

The following components should be implemented and demonstrated using DKVS support:

• PMI2 and port a version of MPICH as a reference implementation;

• PMGR Collective and/or COBO and port a version of MVAPICH as a reference implementa-
tion;

• LIBI and port a version of LIBI-enabled MRNet as a reference implementation.

8.3.5 Job Function Synchronization

• MPIR proctable gatherer that gathers MPIR proctable spread throughout the DKVS into a
central location including the address space of the LWJ launcher;

• MPIR debug interface [18] that makes use of DKVS and process management services to
support parallel debuggers;

• co-locator that co-locates an additional LWJ’s processes with the target processes;

• LaunchMON Back-end API that makes use of DKVS to allow another LWJ processes to
discover the locations of target processes scalably.

8.3.6 Power-Aware Computing

• split() that allows a compute LWJ to create smaller LWJs, and each serves as an independent
power capping domain;

• Dynamic power bound controller that manages expanding and shrinking of power bounds
across these LWJs.

8.4 Phase-Based Work Breakdown

To bring up the proposed WRAP system progressively and expediently, we use a phased approach.
WRAP requires four phases: the outcome of earlier phases becomes the fundamental building blocks
for the later phases. Similarly to the

previous sub-section,
I’m leaving this
sub-section to get
some early feedback
about our bring-up
approach for WRAP.

8.4.1 Phase 1: Basic Building Blocks (BBB) design

During this phase, we will design and prototype the basic building blocks required by WRAP. This
layer represents the lowest building blocks for the WRAP thrust and has fundamental dependencies
on the overlay network infrastructure design as shown in Table 3. Thus, they must be co-designed.

43

D
R
A
FT

Work Item Description Dependency Deliverable

ProcMan design design/prototype process manager comm. infra paper and reviewpackage and APIs

Topo-aware binding design design/prototype topo-aware binding RM design paper and reviewand mapping mechanisms and APIs

Remote DKVS
investigate DKVS via

comm. infra finding summaryremote put/get/sync using bootstrap
and MPIR emulation

BBB Implementation

implement ProcMan comm. protocol

BBB proto software drop
aggregation/reduction framework and API
DKVS name scoping API
direct key-value store
power controller

Table 4: Phase 2 SBB design milestones and deliverables

Work Item Description Dependency Deliverable

LWJ utility design design/prototype LWJ utilities such SBB proto paper and reviewas LWJ launcher

LWJ sync design design/prototype LWJ SBB proto paper and reviewsynchronizers

PMI2, PMGR, LIBI design design/prototype bootstrappers: SBB proto finding summaryPMI2, PMGR/COBO and LIBI

SBB implementation
implement ProcMan package

SBB proto software dropTopology-aware binding
Remote DKVS

Table 5: Phase 3 USI design milestones and deliverables

8.4.2 Phase 2: Service Building Blocks (SBB) design and BBB implementation

During this phase, we will use the design and prototypes of basic building blocks to design and
prototype higher-level service layer called service building blocks (SBB) packages. In addition, that
effort will further validate the BBB design and prototypes and hence we will lock in the BBB design
and produce production-quality BBB implementations during this phase. As shown in Table 4, this
phase is designed to provide core WRAP functionality engine except for the actual user interfaces
to expose.

8.4.3 Phase 3: User Service Interfaces (USI) design and SBB implementation

During this phase, we will use the design and prototype of service building blocks to design and
prototype the user-visible service layer called user service interfaces (USI). In addition, once SBB
prototypes are demonstrated that they are well-suited for the designed USI, we will lock in the SBB
design and produce production-quality SBB implementations. As shown in Table 5, this phase will
lay out the design of WRAP’s external interfaces.

8.4.4 Phase 4: USI implementation

Once we demonstrate that USI prototypes sufficiently support both users and other run-times via
reference implementations, we lock in the SUI design and produce production-quality USI imple-
mentations. Table 6 shows deliverables. The software drops will include the demonstration on client
software such as MPI, MRNet and other run-time tools.

44

D
R
A
FTWork Item Description Dependency Deliverable

LWJ utility implementation implement LWJ NGRM framework software droputilities such as launcher

LWJ sync implementation implement LWJ NGRM framework software dropLWJ synchronization

PMI2, PMGR, LIBI design implement NGRM framework software dropPMI2, PMGR/COBO and LIBI

Table 6: Phase 4 USI implementation

45

D
R
A
FT

A Requirements

A.1 High Level Requirements

Scalable Resource Manager will scale up to 100,000 compute nodes per cluster and will
scale to many clusters to allow management of even the largest centers

Reliable Resource Manager will not have a single point of failure and shall never require
scheduled downtime for software upgrades. Fault tolerance will be incorporated
at every level.

Secure Resource Manager will support wire protocols with built-in privacy and data
integrity.

Extensible Resource Manager will support plugins with clean interfaces wherever possible
to facilitate collaboration, customization, and novel functionality.

Research Friendly Resource Manager design will incorporate features that allow experimenta-
tion and research analysis, including the ability to export sanitized logs, job
data, and the ability to run experimental features within the Resource Manager
framework.

Generalized Resource Manager will attain maximal flexibility by abstracting resources as
much as possible. i.e., a compute node is a pool of resources, a cluster is a
pool of resources, a center is a pool of resources, where a resource can be a
consumable or a collection of such consumables.

Integrated Resource Manager will allow easy integration with other tools and frameworks,
including monitoring, logging, and remote execution.

A.2 Architectural Components

Scheduler The Scheduler manages the priorities of a queue of jobs requesting access to
resources controlled by NGRM.

Resource Manager Tracks resources available in the system and arbitrates access to these resources.
Remote Execution Handles launch of processes across one or more resources managed by NGRM,

including authorization, authentication and management of IO, environment,
etc..

Monitoring/Logging Manages collection and storage of monitoring and log data across the NGRM.
Provisioning Manages root and other filesystem images across the NGRM.
Communications Net-
work

Network channel through which all components of NGRM communicate.

A.3 High-Level Functional Requirements

1. Zero Downtime
1.1. Scheduled upgrades of NGRM components shall not require a downtime.
1.2. The NGRM shall incorporate fault tolerance at every level, so that a failure of one component does

not affect functionality of the system as a whole.
1.3 The NGRM shall support version interoperability, so that the deployed system as a whole is not

required to be at the same level of software.
2. Efficient Center-Wide Resource Management
2.1 The NGRM shall have the ability to function as a single instance managing all clusters within a

network.
2.2 The NGRM shall be able to efficiently display a global view of resources to users when running in

the mode described in R2.1.
2.3 The NGRM shall support the specification of generic resources such as GPUs, IO Bandwidth,

Power, etc in addition to CPUs, Memory, and nodes.

46

D
R
A
FT

2.4 The NGRM shall allow the hierarchy of resources to be specified in configuration or during discov-
ery. For example, the definition of a node should allow the topology of that node to be recorded
in the NGRM configuration (i.e. which CPUs are in which sockets, NUMA placement of memory,
etc.) Similarly, there shall be the ability to record/discover the topology of nodes within a clus-
ter, location and bandwith to IO storage from those nodes, access to and number of licenses, etc.
FIXME: This needs rewording

2.5 The NGRM shall support allocation of ”interactive” resources from the compute pool, allowing
more intelligent and dynamic creation of ”login” nodes

2.6 The NGRM shall support resource ”tags” (similar to existing features) that can be applied to any
resource, and a method to allow users requesting resources to select from tags

3. Integrated Monitoring and Logging
3.0 NGRM monitoring and logging shall be designed to reduce system noise as much as possible
3.1 NGRM shall provide an integrated monitoring plugin API to allow system monitoring to be ex-

tended to handle future requirements.
3.2 NGRM shall provide the ability for users to tune the level of monitoring on the nodes of their jobs,

allowing users to decrease monitoring levels and/or intervals for noise-sensitive jobs, or increase
levels if they so choose.

3.3 NGRM system monitoring events on resources connected with a particular job (including file
systems) shall be made available to users monitoring their job or in post-mortem reports or queries.

3.4 NGRM job log data shall have a public interface usable by tools such as sqlog to avoid duplication
of data.

3.5 NGRM job log and system monitoring data shall be made available in sanitized form for use in
job scheduling research, simulator testing of NGRM releases, etc.

3.6 NGRM job log and system monitoring data shall be collected, annotated, and saved to facilitate
failure analysis.

3.7 NGRM shall provide a library that can be linked to user codes that will collect and store generic
key/value pairs. This would replace LLNL’s tracker tool and LANL’s reportjob tools.

4. Communication Network
4.1 NGRM components shall exchange messages and route log and monitoring data through a heirar-

chical, fault tolerant network.
4.2 NGRM network shall support messages, streaming data, and RPCs
4.3 NGRM network shall support privacy, integrity, and authentication
4.4 NGRM network shall export a API for use by tools and users to reuse established global and

job-wide communication hierarchy.
5. Remote Execution
5.1 NGRM shall provide a service for remote parallel execution across jobs for users as well as globally

for administrators
5.2 NGRM remote execution service shall have the ability to manage instantiation of private names-

paces for jobs
5.3 NGRM remote execution shall allow transport of all process environment attributes including

environment variables, resource limits, namespace attributes, etc.
5.4 NGRM shall have the ability to bootstrap specialized environments such as a copy of NGRM itself

(recursive execution), or an instance of Slurm (for backwards compatibility), or other frameworks
such as Hadoop.

5.5 NGRM shall support launch of MPI jobs up to 100,000 nodes with an arbitrary number of tasks
per node.

6. Provisioning
6.1 NGRM shall separate user and system execution envioronments by running within a minimal

”core” system root, and invoking all jobs within separate (possibly user-selected) root filesystem
6.2 NGRM shall provide service to allow users to run jobs with filesystem configuration of their choosing

using private namespaces. The filesystems will need to be mounted without setuid for security
purposes.

47

D
R
A
FT

7. User Interface
7.1 The NGRM shall export a rich API from which to build user interfaces. Command line as well as

web based interfaces should be feasible with this API.
7.2 NGRM should support a centralized data store for management and analysis of system usage. The

store should support highly concurrent and frequent accesses in as close to real time as possible
without affecting job performance. A memory-based database supporting a pub/sub mechanism,
such as Redis, would be ideal. (Jeff Long, Joel Martinez)

7.3 NGRM should provide an HTTP based REST API. Ideally the API would support a variety of
different data formants (JSON, XML, etc...). The API should be implemented with a single-sign-
on solution or API key implementation to avoid the need for additional user authentication. (Jeff
Long, Joel Martinez)

8. Scheduling
8.1 The Scheduler in the NGRM shall operate as a plugin or separate process or other easily replaceable

component.
8.2 The Scheduler API shall have a clean interface such that the scheduler does not need to be up-

graded/developed in lockstep with the NGRM core
8.3 The Scheduler interface in the NGRM shall allow the scheduling implementation access to all

resources information gathered by the RM, including topology, heirarchy, data locality, IO band-
width, etc.

8.4 When running in recursive mode (e.g. see 5.3), the user should be allowed to select from a list of
alternate scheduler implementations or even provide their own.

8.5 NGRM scheduler shall support high job throughput
8.6 NGRM shall support overlapping resource partitions (queues) NGRM scheduler shall support

complex job dependencies
9. Site Integration
9.1 NGRM must implement fair-share scheduling, and provide a mechanism for administrators to set

usage targets by fair-share account and user. (Greg Tomaschke)
9.2 For utilization reporting, NGRM must recognize four mutually exclusive states for resources: allo-

cated, reserved, idle, and down. NGRM must provide an interface to report the time spent in each
of these states, for any given set of resources over any given period of time. (Greg Tomaschke)

9.3 NGRM must provide a means for users to associate each job with a project ID, independent of
their fair-share account. A user may have a default project ID, and the capability to override it at
job submission. (Greg Tomaschke)

9.4 NGRM must provide an interface to report the time used by all jobs, broken down by fairshare-
account, user, project ID, assigned resources, or any combination thereof, over any given period of
time. (Greg Tomaschke)

9.5 NGRM must provide a means to dump a record of all jobs that have executed on the system, in-
cluding any state transitions of assigned resources, and RAS events that occurred during execution.
(Greg Tomaschke)

A.4 Use Cases

UC1 Use NGRM recursive execution to manage dedicated application test time
Currently a DAT (dedicated application time) is managed by draining an entire cluster and then
”giving” the test team access to the cluster via support staff with expedite privileges. With NGRM
recursive execution, the DAT could be submitted to the RM as a job with constraints to run on
all or part of a cluster. Once the job has been allocated on the cluster, team members would
instantiate interactive instances to the job, and the recursive feature of NGRM would make it
appear as if they had access to an empty cluster. Jobs could then be submitted to this instance
from within the original NGRM job or the users’ interactive instances. This scenario is also useful
for testing new versions of the NGRM or other system software.

48

D
R
A
FT

UC2 Sysadmin ability to ”drain” only a portion of the resource hierarchy
Currently, the resource management ”drain” functionality is limited to a single node. Consider a
case where a resource within a node goes bad, e.g. a GPU. Since the rest of the node is fine, the
NGRM should allow just the GPU resource to be ”drained” and the rest of the node is usable for
compute jobs that do not need a GPU resource. When draining a full node or group of nodes, all
the resources within the hierarchy of those nodes should also be drained. This would also allow an
entire cluster or subset of resources to be drained by draining at the top level ”cluster” resource.

UC3 Power utilization as a resource
As a datacenter manager I want to deploy a cluster and provision less power to it than the max
theoretical peak. The NGRM should allow the total available power to be specified at the cluster
and/or PDU level within the cluster, and should treat power as a consumable resource. The NGRM
will ensure that the set of resources use only the power that has been budgeted. If realtime power
utilization is available, then those values can be aggregated and used (though this may not be
safe when applications with fluctuating power demands are running), otherwise the NGRM should
allow some kind of power utilization model to be registered (e.g. 90W per cpu + 100W per GPU
+ 200W base utilization per node...)

UC3.1 Energy usage part of job report
The total energy consumed by a job should be reported upon job completion. (Barry Rountree)

UC3.2 Track power efficiency of components
CPU’s have varying power efficiency. Periodically measure this and record in resource db to be
combined with a static power model. Also, scheduler could use this info to schedule the fastest
nodes to the critical path. (Barry Rountree)

UC3.3 MPI runtime able to set power MSRs
The MPI runtime can identify slow ranks and adjust power clamping to gain more performance.
Application-driven variation in power consumption must not exceed breaker trip levels in a system
plumbed for less than peak power consumption. (Barry Rountree)

UC3.4 Provide ability for job to specify power ranges
User should be able to specify the maximum (and minimum?) power their job will consume.
Scheduler will only schedule job when it can configure the resources to remain within the specified
power envelope. (Barry Rountree)

UC3.5 Node vs. Time Scheduling becomes Power vs. Time
See M. Etinski paper [21] (Barry Rountree)

UC3.6 Limiting Site Power Swings
NGRM must provide the ability to constrain power usage ramp-up and ramp-down rates to meet
facilities requirements. (Trent D’Hooge)

UC4 Generic aggregate resources
As a generic case of UC3, imagine a resource that is distributed across nodes or a whole cluster. A
contrived example might be bandwidth to a SAN or other storage pool. The NGRM should have
the ability to account for, manage, and schedule such generic resources in a way that is extensible
to unforeseen resources, since we cannot imagine all possibilities beforehand. The NGRM should
offer the ability to develop plugins or helpers to enforce and monitor and display these aggregate
resources.

UC5 Center-wide cron
As a sysadmin I may want to schedule a periodic job to run on systems of a certain type, so the
NGRM should have cron-style capabilities at the center level. A cron ”job” should be registered
in the queue or in configuration that is run by the NGRM on the specified interval, on nodes
matching the resource constraints specified in the ”job”. Cron work scheduled on compute nodes,
such as required NAPS tests, should be run through NGRM such that they do not create OS jitter
for running jobs. For example, they could only run between jobs or if they must run during a job,
they could run synchronized. Users should be able to submit cron jobs too (at least some users
like hotline do this).

49

D
R
A
FT

UC6 Live user feedback for job progress
As a user I would like access to resource manager data live while my job is running as a sort of job
progress indicator. It would be useful to have IO statistics (perhaps with built-in IO Watchdog
functionality), power utilization, network bandwidth, and the ability to register handlers if no
progress is detected (by my own definition of no progress detected).

UC7 Allow users to inject application specific data into data stream for jobs
As a user it would be really useful if I could inject application specific data into the data stream for
a job. The job database could then keep this data in perpetuity, instead of having me keep data
about my runs in an ad-hoc fashion. Data should be free form to allow for the greatest usability.
Examples might be name of code, run ID, and iterations as they occur with timestamps. This
would be useful in conjunction with UC6 as well.

UC8 dsh—dshbak
As suggested by req. 5.1, pdsh—dshbak would be submitted via NGRM. There should be a way to
limit concurrency (like pdsh fanout), a way to select specific hostnames (like pdsh wcoll), and a way
to submit the dshback such that output is reduced in a distributed fashion (e.g. on intermediate
nodes of the comms tree).

UC9 User control over system software levels
As a user, for testing or reproducible results, I want to the ability to rerun a job or set of new
jobs under a previously supported level of system software. I do not want to be required to record
important system software versions manually, so the resource manager should track this data for
every run and keep a record in a historical database so that I can go back and determine what
software level was running when any one of my jobs ran.

UC10 Testing system software releases
Major system sofware releases (e.g. TOSS major releases that break binary compatibility with old
releases) should be testable in advance of being configured as the default through NGRM option
at run time.

UC11 Integrated tool support
NGRM should be able to efficiently launch and tear down STAT, totalview, and other distributed
tools with a presence on compute nodes. NGRM should provide hooks for those tools so they can
avoid reimplementing NGRM features. (See also MPI 3.0 Tools Support WG de Supinski, Schulz)

UC12 Allocate spare resources from a common pool
Support a ”spare resources” model whereby fault tolerant MPI jobs could dynamically pull in
replacement nodes or other resources from the common pool rather than allocating spare resources
privately at job submission.

UC13 Checkpoint/restart
Support user-level checkpoint/restart such that NGRM can signal a job to begin checkpointing,
receive an acknowledgement when checkpointing is complete, manage the checkpoint data (ensure
it is on stable storage), clear the job from the system, then at a later time, stage in the checkpoint
data and restart the job. (See also BLCR, SCR, OpenMPI c/r).

UC14 Ephemeral file system instances
Allow user to request a dedicated parallel file system to be instantiated for the life of their job.
NGRM could allocate disks from pool of storage resources, optionally stage data on/off of this file
system at setup/tear-down.

UC15 Integrated I/O forwarding support
Set up and tear down I/O forwarding daemons for exclusive use by a job. Allow flexibility in
the number and placement of such daemons and their mapping to compute nodes. Collect I/O
statistics from daemons and make available as part of job monitoring stream/records.

UC16 Hadoop framework
NGRM should be able to launch hadoop framework on allocated resources (including storage).

50

D
R
A
FT

UC17 User database instances
NGRM should support starting a database server such as MySQL on allocated nodes/storage,
loading a data set, and running a series of jobs that use the database, in some way telling the jobs
how to connect to the server, and managing access.

UC18 Detect and report out of spec components
As suggested by req. 3.6, NGRM should make it easy to detect when hardware / software compo-
nents are performing out of spec or isolate components common to failed jobs.

UC19 Record HW configuration
NGRM should record known HW configurations for each job executed. The data should have an
schema-less, self-describing format to facilitate future previously unknown hardware configurations.

UC20 Provide ”pre-job” resource information
Users or admins should be able to query resource information such as network topology, I/O
bandwidth, CPU speed, node memory, etc. This allows for users to alter jobs for ”optimum”
execution. For example, MPI communications algorithms or requested node allocation could be
changed based on network topology.

UC21 Virtual private networks for jobs
It should be possible to run a job in a virtual private network environment separate from that of
the NGRM software, such that the job’s network access is restricted to resources appropriate for it
to access. This could be used to manage access to private services, such as the database in UC17.
It might also be possible to organize user communities and their file stores such that the same
protection offered by a firewall could be achieved without partitioning stateless compute resources.

UC22 Verbose Logging Triggered by Fault Event
The monitoring system should facilitate capturing verbose debug logs prior to a fault event. One
way to do this is with a circular trace buffer that is dumped into the monitoring stream on
notification of a fault. (See ”self propelled instrumentation”, e.g. paradyn project) (Kathryn
Mohror, Don Lipari)

UC23 I/O Staging
The user should be able to specify files at job submission time that will be moved to storage close
to compute nodes in advance of job launch. Files could be directed to be moved the other direction
after job termination. This should be done in a way that does not impact other jobs, and can
occur concurrently with allocating/freeing other job resources that aren’t involved in moving files
(Kathryn Mohror)

UC23 Give me a fat node for rank 0 and top it up with thin or fat ones
In sbatch to ask for a fat node (more memory) and then a couple of other nodes (fat or thin), and
then have the batch script start on the fat node, so that rank 0 is placed there by default by the
MPI. (Kent Engstrom request to slurm-dev)

51

D
R
A
FT

References

[1] Classad language reference manual. Retrieved Dec 14, 2012 from http://research.cs.wisc.
edu/htcondor/classad/refman/.

[2] The Globus resource specification language RSL v1.1. http://toolkit.globus.org/toolkit/
docs/5.2/5.2.5/gram5/developer/#gram5%-rsl. Accessed: 02-25-2013.

[3] Lua sand boxes. Retrieved Feb 22, 2013 from http://lua-users.org/wiki/SandBoxes.

[4] Nagios. Retrieved Feb 10, 2013 from http://www.nagios.org.

[5] Coordinated infrastructure for fault tolerant systems, fault tolerance backplane (FTB) API
version 0.5, document revision 0.3. Interface specificiation, The CIFTS Group, Aug 2010.

[6] MRNet API programmer’s guide, release 4.0.0. Interface specification, Paradyn Tools Project,
Computer Sciences Department, University of Wisconsin, Madison, April 2012.

[7] Moab workload manager version 7.2.6. Administrator guide, Adapting Computing, 2014.

[8] D. H. Ahn, D. C. Arnold, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz. Overcom-
ing scalability challenges for tool daemon launching. In Proceedings of the 37th International
Conference on Parallel Processing, pages 578–585, 2008.

[9] J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The Definitive Guide Time to Relax.
O’Reilly Media, Inc., 1st edition, 2010.

[10] D. C. Arnold and B. P. Miller. A scalable failure recovery model for tree-based overlay networks.
Technical Report TR1626, Computer Sciences Department, University of Wisconsin, 2008.

[11] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Krishna, E. Lusk, and R. Thakur. PMI:
A scalable parallel process-management interface for extreme-scale systems. In Proceedings of
the 17th European MPI Users’ Group Meeting Conference on Recent Advances in the Message
Passing Interface, EuroMPI’10, pages 31–41, Berlin, Heidelberg, 2010. Springer-Verlag.

[12] S. M. Balle and D. J. Palermo. Enhancing an open source resource manager with multi-
core/multi-threaded support. In JSSPP, pages 37–50, 2007.

[13] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and
O. Richard. A batch scheduler with high level components. In Proceedings of the Fifth IEEE In-
ternational Symposium on Cluster Computing and the Grid (CCGrid’05) - Volume 2 - Volume
02, CCGRID ’05, pages 776–783, Washington, DC, USA, 2005. IEEE Computer Society.

[14] R. H. Castain, W. Tan, J. Cao, M. Lv, M. Jette, and D. Auble. MapReduce support in
SLURM: releasing the elephant. Retrieved from http://schedmd.com/slurmdocs/slurm_ug_
2012/MapRedSLURM.pdf, 2012.

[15] S. Castano, A. Ferrara, S. Montanelli, and G. Racca. Matching techniques for resource discovery
in distributed systems using heterogeneous ontology descriptions. In Information Technology:
Coding and Computing, 2004. Proceedings. ITCC 2004. International Conference on, volume 1,
pages 360 – 366 Vol.1, april 2004.

[16] S. J. Chapin, D. Katramatos, J. Karpovich, and A. S. Grimshaw. The Legion resource man-
agement system. In Proceedings of the 5 th Workshop on Job Scheduling Strategies for Parallel
Processing, pages 162–178. Springer Verlag, 1999.

[17] D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON). RFC
4627 (Informational), July 2006.

[18] J. DelSignore, D. Ahn, R. Castain, and J. Squyres. The MPIR process acquisition interface
version 1.0. Interface specification, MPI Forum Working Group on Tools, 2010.

52

D
R
A
FT

[19] R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard), Mar. 1997.
Updated by RFCs 3396, 4361, 5494.

[20] C. Dunlap. MUNGE uid ’n’ gid emporium. Retrieved Nov. 9, 2012 from http://code.google.
com/p/munge/.

[21] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Optimizing job performance under a given
power constraint in HPC centers. 2010 International Green Computing Conference, 2010.

[22] Freedesktop.org. D-Bus. Retrieved Feb. 26, 2013 from http://www.freedesktop.org/wiki/
Software/dbus.

[23] Freedesktop.org. Systemd. Retrieved Feb. 26, 2013 from http://www.freedesktop.org/wiki/
Software/systemd.

[24] T. Gamblin and K. Mohror. Leveraging log analytics to understand application I/O. Proposal
for Laboratory Directed Research and Development LLNL-PROP-559051, Lawrence Livermore
National Laboratory, 2012.

[25] R. Gerhards. The Syslog Protocol. RFC 5424 (Proposed Standard), Mar. 2009.

[26] J. D. Goehner, D. C. Arnold, D. H. Ahn, G. L. Lee, B. R. De Supinski, M. P. Legendre, B. P.
Miller, and M. Schulz. LIBI: A framework for bootstrapping extreme scale software systems.
Parallel Comput., 39(3):167–176, Mar. 2013.

[27] Google, Inc. Protocol buffers. Retrieved Nov. 16, 2012 from http://api.developers.google.
com/protocol-buffers.

[28] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the location of services
(DNS SRV). RFC 2782 (Proposed Standard), Feb. 2000. Updated by RFC 6335.

[29] R. Gupta, P. Beckman, B. H. Park, E. Lusk, P. Hargrove, A. Geist, D. K. Panda, A. Lumsdaine,
and J. Dongarra. CIFTS: A coordinated infrastructure for fault-tolerant systems. Proceedings
of the International Conference on Parallel Processing (ICPP), 2009.

[30] S. Hanna, B. Patel, and M. Shah. Multicast Address Dynamic Client Allocation Protocol
(MADCAP). RFC 2730 (Proposed Standard), Dec. 1999.

[31] P. Hintjens. ØMQ - the guide, updated for version 3.2. Retrieved Nov. 5, 2012 from http:
//zguide.zeromq.org/page:all.

[32] R. Ierusalimschy. Programming in Lua, Second Edition. Lua.Org, 2006.

[33] M. Jette and M. Grondona. SLURM: Simple linux utility for resource management. Cluster-
World Conference and Expo, 2005.

[34] A. Keller, A. Reinefeld, and E. Reinefeld. CCS resource management in networked HPC sys-
tems. In In Proc. of Heterogenous Computing Workshop HCW98 at IPPS, pages 44–56. IEEE
Computer Society Press, 1998.

[35] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. RFC 2401 (Proposed
Standard), Nov. 1998. Obsoleted by RFC 4301, updated by RFC 3168.

[36] R. Koning, P. Grosso, and C. de Laat. Using ontologies for resource description in the cinegrid
exchange. Future Gener. Comput. Syst., 27(7):960–965, July 2011.

[37] G. P. Koslovski and P. V.-b. Primet. VXDL: Virtual resources and interconnection networks
description language. Networks for Grid Applications, 2:1–17, 2009.

53

D
R
A
FT

[38] P. Mockapetris. Domain names - concepts and facilities. RFC 1034 (Standard), Nov. 1987.
Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343,
4035, 4592, 5936.

[39] A. Natrajan, M. A. Humphrey, and A. S. Grimshaw. Grid resource management in Legion.
2004.

[40] A. Pernas and M. Dantas. Ontology based service for grid resources description. In Cluster
Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on, volume 1,
pages 154 – 159 Vol. 1, may 2005.

[41] E. Plugge, T. Hawkins, and P. Membrey. The Definitive Guide to MongoDB: The NoSQL
Database for Cloud and Desktop Computing. Apress, Berkely, CA, USA, 1st edition, 2010.

[42] A. Rabkin and R. H. Katz. Chukwa: A system for reliable large-scale log collection. Master’s
thesis, EECS Department, University of California, Berkeley, Mar 2010.

[43] N. Regola and J.-C. Ducom. Recommendations for virtualization technologies in high perfor-
mance computing. In Proceedings of the 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, CLOUDCOM ’10, pages 409–416, Washington, DC, USA,
2010. IEEE Computer Society.

[44] P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A software-based multicast/reduction net-
work for scalable tools. In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,
SC ’03, pages 21–, New York, NY, USA, 2003. ACM.

[45] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and M. Schulz. Beyond DVFS:
A first look at performance under a hardware-enforced power bound. In IPDPS Workshops,
pages 947–953. IEEE Computer Society, 2012.

[46] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin, D. Leshchiner, M. Luby, T. Mont-
gomery, L. Rizzo, A. Tweedly, N. Bhaskar, R. Edmonstone, R. Sumanasekera, and L. Vicisano.
PGM Reliable Transport Protocol Specification. RFC 3208 (Experimental), Dec. 2001.

[47] W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Third edition, 1999.

[48] R. Stewart, M. Tuxen, and P. Lei. SCTP: What is it, and how to use it? BSDCan 2008: The
Technical BSD Conference, 2008.

[49] J. Van Der Ham, F. Dijkstra, P. Grosso, R. Van Der Pol, A. Toonk, and C. De Laat. A
distributed topology information system for optical networks based on the semantic web. Opt.
Switch. Netw., 5(2-3):85–93, June 2008.

[50] J. van der Ham, P. Grosso, F. Dijkstra, and C. T. de Laat. Semantics for hybrid networks
using the network description language. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[51] J. J. van der Ham, F. Dijkstra, F. Travostino, H. M. A. Andree, and C. T. A. M. de Laat.
Using RDF to describe networks. Future Gener. Comput. Syst., 22(8):862–867, Oct. 2006.

[52] Wikipedia. Folksonomy — wikipedia, the free encyclopedia. http://en.wikipedia.org/w/
index.php?title=Folksonomy&oldid=539451265, 2013. [Online; accessed 26-February-2013].

[53] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. D. Rose. Per-
formance evaluation of container-based virtualization for high performance computing environ-
ments. 21st Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), 2013.

54

