
1

Flux: Overcoming Scheduling Challenges for
Exascale Workflows

Dong H. Ahn∗, Ned Bass∗, Albert Chu∗, Jim Garlick∗, Mark Grondona∗, Stephen Herbein∗, Helgi I. Ingólfsson∗,
Joseph Koning∗, Tapasya Patki∗, Thomas R. W. Scogland∗, Becky Springmeyer∗ Michela Taufer†

∗Lawrence Livermore National Laboratory, 7000 East Ave. Livermore, CA
{ahn1, bass6, chu11, garlick1, grondona1, herbein1, ingolfsson1, koning1, patki1, scogland1,

springmeyer1}@llnl.gov †University of Tennessee, Knoxville. Knoxville, TN
taufer@utk.edu

Abstract—Many emerging scientific workflows that target
high-end HPC systems require complex interplay with the
resource and job management software (RJMS). However,
portable, efficient and easy-to-use scheduling and execution of
these workflows is still an unsolved problem. We present Flux,
a novel, hierarchical RJMS infrastructure that addresses the
key scheduling challenges of modern workflows in a scalable,
easy-to-use, and portable manner. At the heart of Flux lies its
ability to be seamlessly nested within batch allocations created
by other schedulers as well as itself. Once a hierarchy of Flux
instances is created within each allocation, its consistent and
rich set of well-defined APIs portably and efficiently support
those workflows that can often feature non-traditional execution
patterns such as requirements for complex co-scheduling, massive
ensembles of small jobs and coordination among jobs in an
ensemble. Our evaluation of Flux on some of the emerging
workflow efforts at Lawrence Livermore National Laboratory
indicates that our approach can significantly address major
workflow scheduling challenges: job throughput, co-scheduling,
job coordination and communication and portability challenges.
Further, our performance measurements on both synthetic and
real-world ensemble-based workflows suggest that our solution
can improve the job throughput performance of these scientific
workflows by a factor of 48.

I. INTRODUCTION

Scientific workflows continue to become more complex,
and their execution patterns are also drastically changing.
To exploit the ever-growing compute power of systems and
upcoming exascale platforms, modern workflows increasingly
employ multiple types of simulation applications coupled
with in situ visualization, data analytics, data stores and
machine learning [1], [2], [3], [4]. Furthermore, the current
push towards rigorous verification and validation (V&V)
and uncertainty quantification (UQ) [5] approaches often
features simulations that involve enormously large numbers of
short-running jobs (e.g., reduced models and 1D simulations),
straying away from traditional long-running execution.

These trends have become ever more apparent on some
of the most massive high-performance computing (HPC)
systems, such as the Sierra [6] and Summit [7] machines,
the new pre-exascale systems fielded at the world’s
largest supercomputing centers. Three major early science
applications running on Lawrence Livermore National
Laboratory (LLNL)’s Sierra, including [2], [8], for instance,
now embrace non-traditional workflows. Additionally, our

recent analysis on other large production clusters at LLNL
shows that 48.1% of jobs involved the submission of at least
100 identical jobs by the same user with 27.8% submitted
within one minute of each other, a pattern typically associated
with V&V and UQ. Such workflows, often referred to as
ensemble-based, are quickly becoming a norm.

Resource and job management software (RJMS) is central
to enabling efficient execution of applications on HPC
systems, and therefore is also the main interface for
executing these complex workflows. However, recent trends
towards new execution patterns, significantly complicate
efficient (co-)scheduling and execution of their tasks. In
particular, centralized techniques implemented within widely
deployed RJMS including SLURM [9], IBM LSF [10],
MOAB [11], or PBS Pro [12] no longer work well as
they are fundamentally designed for the traditional paradigm:
a few large, long-running, homogeneous jobs rather than
ensembles composed of many, and often small, short-running
heterogeneous tasks.

These limitations are already presenting greater technical
challenges for exascale workflows, which will only worsen if
not met properly. Four such key challenges are listed below.

1) Throughput Challenge: Large ensemble simulations
require massive numbers of jobs that cannot comfortably
be ingested and scheduled by the traditional approach;

2) Co-scheduling Challenge: Complex coupling requires
sophisticated co-scheduling that the existing centralized
approaches cannot easily provide;

3) Job coordination and communication challenge:
Intimate interactions with RJMS is required to keep
track of the overall progress of the ensemble execution,
and existing approaches lack well-defined interfaces;

4) Portability Challenge: There has been a proliferation of
ad hoc implementations of user-level schedulers as an
attempt to tackle the above challenges. They are often
non-portable and come with a myriad of side effects
(e.g., millions of small files just to coordinate the current
state of an ensemble).

In this paper, we present Flux, a novel resource
management and scheduling infrastructure that overcomes the
above challenges in a scalable, easy-to-use, portable, and
cost-effective manner. At the core of Flux lies its ability



2

to be seamlessly nested within batch allocations that are
created by itself or other resource managers, along with
allowing for user-level customization of scheduling policies
and parameters. This fully hierarchical approach allows the
target workflows to submit fewer jobs that resemble the
traditional execution pattern to the low-level schedulers, most
notably the native system scheduler, while more fine-grained
scheduling is performed by a hierarchy of nested instances
running within each allocation. Each level also allows
customizable scheduling policies and parameters, addressing
both the throughput and co-scheduling challenges.

In addition, Flux is designed from the ground up as a
software framework with a rich set of well-defined APIs
including job submission, job status and control, messaging,
as well as input and output streaming APIs. Workflows
can use any of these APIs to facilitate communication and
coordination of various tasks to be executed within and across
ensembles. Finally, to address portability challenges, its APIs
are specifically designed to be consistent across different
platforms. Creating an instance requires only the lower-level
resource manager to provide the Process Management
Interface (PMI), the de facto standard for MPI bootstrapping,
or the user to provide a configuration.

Specifically, this paper makes the following contributions:

• Identification and discussions of specific exascale
workflow scheduling challenges based on emerging
practices at LLNL, one of the world’s largest
supercomputer centers;

• Novel hierarchical approaches for providing resource
management and scheduling infrastructure at the user
level to address the above challenges;

• Performance evaluations of our hierarchical approaches
on up to one million short-running jobs using both
synthetic and real simulation codes;

• Case studies and lessons learned from integrating
our approaches to three distinct real-world workflow
management systems targeting exascale computing;

• Discussions on techniques needed to address the
remaining challenges.

Our evaluation of Flux on emerging workflow efforts at
LLNL shows that our solution significantly overcomes all of
the stated challenges. First, our case study on the Multiscale
Machine-Learned Modeling Infrastructure (MuMMI) shows
that Flux can efficiently co-schedule a new workflow that
employs machine learning (ML) to couple a large macro-scale
simulation with an ensemble of tens of thousands of
micro-scale molecular dynamics (MD) simulations; starting
and stopping during a run at high speed. Second, our
integration with Merlin, a workflow management system
designed to support next-generation ML on HPC, shows
that Flux significantly enables not only co-scheduling of
various task types within each ensemble but also its needs
for high portability and task communication and coordination.
Third, our performance measurements on both synthetic
and real-world ensemble-based workflows suggest that our
hierarchical scheduling approach can lead to 48× performance
improvement in terms of job throughput for these workflows.

II. A MOTIVATIONAL EXAMPLE

To motivate the need for our technology, we consider the
Joint Design of Advanced Computing Solutions for Cancer
(JDACS4C) Pilot 2 workflow as our motivational example,
an early science application being run on LLNL’s Sierra
system. This workflow features non-traditional co-scheduling
and execution patterns that present challenges to existing
system schedulers.

A. The Multiscale Machine-Learned Modeling Infrastructure

The JDACS4C program is a partnership between the United
States (US) Department of Energy (DOE) and the National
Cancer Institute (NCI) to advance cancer research using
emerging exascale HPC capabilities. The Pilot 2 project
within JDACS4C seeks to develop effective HPC simulation
methods to uncover the detailed characterizations of the
behavior of RAS on cellular membranes. The RAS protein
family are small GTPase signaling proteins involved with
control of cell division and growth. Mutations leading to
increased RAS activity contribute to a wide range of cancers
and up to 30% of human cancers are linked to mutations
in the ras gene family [13]. RAS proteins typically signal
their downstream effectors when bound to the lipid bilayer
of cellular membranes and currently no drugs exist that
inhibit RAS activity. Resolving RAS membrane dynamics
and aggregation is a difficult task as macroscale length
and time scales are needed; yet, microscale molecule-level
details are required to capture protein-protein and protein-lipid
interactions.

To resolve RAS structure and dynamics on cellular
membranes, the Pilot 2 team developed MuMMI [8] that
can sample at the macroscale with effective microscale
resolution. MuMMI is an adaptive multiscale infrastructure
that directly couples molecular-detail MD simulations to a
cellular-scale macro simulation. Figure 1a depicts the MuMMI
workflow. A macro model, in this case, an 1 µm x 1
µm realistic eight lipid-type plasma membrane mimic is
simulated with 300 RAS molecules. This novel macro model
is coupled with an ML module that drives the sampling of
patches, small neighborhoods around an RAS molecule. These
patches are then used to instantiate and run corresponding
MD simulations. Additionally, several in situ processing
components are required to control the running of particular
MD simulations and to provide feedback to the macro model
for parameter refinement.

Fig. 1b presents the MuMMI modules, code framework
and how they are connected. The macro model is simulated
at biologically relevant and experimentally accessible time
and length scale, but with rather low resolution. The finite
element solver MOOSE [14] is used to evolve the continuum
lipid dynamics, based on a dynamic density functional theory
(DDFT) model. The DDFT dynamics are then coupled to
a Langevin particle model running on ddcMD [15] that
allows for the evolution of discrete RAS proteins on the
membrane. The ML is then used to direct instigation and
investigation of coarse-grained (CG) particle simulations of the
most “interesting” patches of the macro simulation. Its novel



3

(a) MuMMI couples macro and micro scale simulations using ML. (b) MuMMI modules and code framework

Fig. 1: The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) leverages ML to drive the effective sampling of a
large length and time scale simulation for further molecular-level, detailed simulations on heterogeneous HPC resources.

features provide an intelligent sampling of the macro-scale
simulation space, which then further leads to a detailed
exploration that is not achievable using only brute force
calculations. Furthermore, the in situ analyses of the CG
simulations provide feedback back into the macro model: i.e.,
the vast sampling carried out at the CG level heals the initial
macro model parameters in real time.

B. Complex Execution Patterns Examplified by MuMMI

At each time step of the macro model within MuMMI,
300 patches are extracted (one centered at each RAS protein)
and compared to all patches previously explored using MD
simulations. Whenever computing resources become available,
the most unusual new patch (i.e., the patch with the largest
distance to its neighbors in latent space) is taken and a new
corresponding MD simulation is created and then executed.
Therefore, the framework discussed above crucially relies
on the ability to automatically instantiate MD simulations,
monitor them on the fly, and provide feedback to the macro
model. RAS orientations are selected from pre-constructed
libraries based on their state, randomly rotated in the
membrane plain, and pulled to the membrane surface.

The CG setup module is Python-based and uses the
GROMACS MD package [16] for minimization and initial
equilibration before ddcMD is used for production simulations
(CG run) on GPU resources. A new ddcMD version was
developed that implements the Martini force field [17], [18],
adding an atom padding technique, and implements the
entire MD loop in CUDA. This implementation offloads
the entire computation to the GPU with nearly no CPU
resource requirements, freeing those resources for other
MuMMI modules. Every calculation step necessary for Martini
now runs on the GPU via CUDA kernels, including the
integrator and constraint solver, such that particles are only
communicated back to the host for I/O purposes and never for
calculations of the particle forces or movement. This leaves
the CPUs tasked with only managing the order and launches
of the aforementioned kernels. While the MD simulations

are running, analysis modules (CG analysis) are actively
monitoring the simulation analyzing all outputted frames on
the fly and less frequently storing frames for offline analysis.
The online analysis modules continuously accumulate data
of interest for analysis and provide on-the-fly updates to the
macro model parameters based on the newest CG simulation
data.

The MuMMI workflow manager (WF Manager) connects
all these different components. The WF manager consumes all
generated macro model patches, initiates the ML infrastructure
to score patches, and schedules selected patches for simulation
setup and execution runs. All generated macro model patches
are fed to the ML, which maintains a priority queue of
candidate patches. Additionally, a small buffer of already
setup simulations is maintained so available GPU resources
can be utilized as soon as they become available. When
new resources become available, top patch candidates are
selected for simulation setup or simulation execution. MuMMI
schedules jobs through Maestro [19], [20] that can use a
wide range of back-end HPC resource managers and batch-job
schedulers to start and stop jobs. The current workflow is
coordinated through an in-memory data broker and a network
file system. Fast data transfer and messaging are handled
through the IBM® DataBroker (DBR) [21], which implements
a fast, system-wide in-memory key-value store and files are
shared through the IBM Spectrum ScaleTM (GPFS) parallel
file system.

When running at scale on a heterogeneous resource machine
like Sierra, the different MuMMI modules are run on different
resources to utilize the machine better. The macro model
(50-1000 nodes), ML and WF manager (one node), DBR
(50-100 nodes), and GROMACS (CG setup) simulations (one
node each) are all run on CPUs only. While, in the case of
Sierra, four separate ddcMD simulations are run on each node,
one for each GPU as well as an accompanying CG analysis
(CPUs only) for each simulation. Therefore, a typical node is
running nine separate MuMMI jobs. In order for this to work
well at scale on Sierra with 4000 nodes, the job execution



4

system needed to manage up to 36,000 simultaneous jobs and
continually re-schedule work as microscale jobs complete and
new simulations takeover those resources. Overall, MuMMI’s
execution pattern featuring complex co-scheduling of high
volume of jobs has proven to be difficult even for arguably
most advanced HPC resource managers and schedulers to
handle.

III. CHALLENGES IN WORKFLOW SCHEDULING

MuMMI exemplifies the many (co-)scheduling and
execution challenges faced by emerging workflows. They
include co-scheduling of coupled simulations at different
scales (i.e., macro models-based simulations with several
thousand MD simulations, coordination between CPU and
GPU runs), the use of an ML module to schedule and execute
simulations dynamically at a high rate, and the use of data
store to coordinate the data flow between different tasks.

This section further further characterizes the key scheduling
and execution challenges such as the ones shown in the
MuMMI workflow. Our analysis is based on our direct
interactions with three distinct workflow management software
development teams at LLNL, namely the JDACS4C MuMMI
workflow, Uncertainty Quantification Pipeline (UQP) [22],
and the Merlin workflow that supports extreme-scale machine
learning [2], as well as interviews with developers of
other workflow management software such as PSUADE UQ
framework [23] and end users who have created ad hoc
schedulers for their workflows. While each of these workflows
often addresses entirely different domains of science, they
exhibit common scheduling issues. As briefly highlighted in
Section I, they are referred to as throughput, co-scheduling,
job coordination/communication, and portability challenges.

A. Throughput Challenge

Many workflows feature large ensembles of small,
short-running jobs, which can create thousands or even
millions of jobs that need to be rapidly ingested and
scheduled. For the JDACS4C Pilot 2 example presented in
the previous section, several thousand MD simulations need
to be run successfully with a quick turnaround time to
facilitate the refinement of parameters in the macro model
and produce microscale results. In the case of the UQP,
building a surrogate model can require tens to hundreds of
thousands of simulation executions to adequately sample the
simulation’s input parameter space. Such ensemble workloads
are becoming a norm rather than an exception on high-end
HPC systems.

Traditional RJMS in most cloud and HPC centers today
are based on centralized designs. Cloud schedulers such as
Swarm and Kubernetes [24], [25] and HPC schedulers such
as SLURM, MOAB, PBSPro and IBM LSF [9], [11], [10],
[12] are implemented using this model. This model often
fails to cope with rapid job ingestion, and because of this,
a site imposes a cap on the number of jobs submitted at once
and allowed in the scheduler. The cap then requires workflow
managers to throttle the rate of their job submissions to match

the ingestion rate, artificially decreasing the job throughput of
the workload.

Furthermore, this pattern can also lead to shared
resource thrashing and exhaustion. For example, the Sequoia
supercomputer at LLNL, which has 1.6 million cores,
encountered several scale-up problems when users tried to
run about 1500 small UQ jobs (1-4 MPI tasks each) at
the same point in time in 2014. While SLURM and IBM’s
control software managed to expand their limits to about
3-5K simultaneously executing jobs after fine-tuning various
configuration parameters for some cases, several rare errors
still kept cropping up. Eventually, LLNL created a temporary
solution by building CRAM, a library that packs many small
jobs into a single large job [26]. Unfortunately, libraries such
as CRAM are not the panacea for centralized schedulers, and
even well-engineered centralized solutions can suffer from
several scalability and resiliency issues.

B. Co-scheduling Challenge

Coupling in complex workflows requires co-scheduling of
different components. In the example we presented earlier, the
CPU and GPU workloads need to be co-scheduled effectively.
Additionally, data need to be communicated to the host when
necessary, and support for in situ analysis, as well as online
techniques, require other jobs to be active on the node. More
specifically, in MuMMI four different types of jobs need to be
scheduled on CPUs only and one job type on both GPU and
CPU. Two of these jobs are always run in tandem with four
pairs running on every node. One of the CPU jobs runs across
a good fraction of the nodes, while other single node jobs
are started as needed; fully utilizing all resources. Moreover,
this decision is dynamically determined by an ML guided
workflow, a completely new execution pattern.

Most traditional schedulers do not allow for such
customization, making it challenging to utilize resources
well. Co-scheduling can offer several utilization and job
throughput benefits, as well as allow for customization of
application kernels and efficient co-existence of multiple
workflow components. Current schedulers offer little or no
support for sharing multiple kinds of jobs within an allocation
or for customizing resource allocations such as cores or
GPUs (or others, such as burst buffers). If at all, only fixed
mechanisms for requesting allocations exist, and users cannot
tune these from one application to the next or leverage their
domain knowledge about the resource utilization of their
application.

C. Job coordination and communication Challenge

Modern scientific workflows depend on data transfer
between various components of a framework. For example,
as we showed in Fig. 1b, the information about novel
patches triggers additional micro model simulations, which
in turn are used for further parameter refinement. Multiple
such simulations need to be analyzed on the fly and their
information is aggregated and weighted to update the macro
model parameters, which requires intimate coordination and
communication between jobs as well as within the job.



5

Existing schedulers have limited support for ingesting,
storing/retrieving job output or job status information, often
requiring inefficient communication through file systems.
Many workflow managers, such as UQP circumvent these
issues by having jobs create an empty file whenever they start
or complete. This allows UQP to track the state of every job
in the workflow, but it is at the cost of creating a large and
unnecessary metadata load on the target file system, infringing
on the performance of both the workflow itself and the entire
system.

D. Portability Challenge

One of the common problems with emerging workflow
management systems is that they have to be ported to a
wide range of RJMS. With no common infrastructure for
supporting their scheduling, the task of porting m workflows to
n environments amounts to an m×n effort. Often, those point
solutions are non-portable, and even if a solution is ported
on a new platform, they can often come with a multitude of
side-effects (e.g., creating too many files for ensemble status
checking). The more complex the target workflow is, the more
difficult porting would become because a new scheduler may
not provide all of the advanced features that the workflow
might have used in its previously tested schedulers.

Scientists and developers often need to rewrite their scripts
from scratch in order to adapt to a new environment,
potentially introducing several scripting/setup bugs, requiring
additional testing, underutilized resource allocations and
reducing overall productivity. For example, in the MuMMI
RAS multiscale simulation campaign, moving from a cluster
that uses IBM’s LSF and jsrun to another that relies
on SLURM can be challenging regarding setup cost. Also,
being able to leverage different heterogeneous resources,
including GPUs and burst buffers, often requires new flags and
configuration parameters to be specified. This often results in
ad hoc solutions for application scheduling.

IV. FLUX

The Flux framework is a suite of projects, tools and
libraries that can be used to provide both site- or user-level
resource managers and schedulers for large HPC centers. Flux
provides a fully hierarchical software framework architecture
to allow for seamless nesting of resource manager and
scheduler instances in a highly scalable and customizable
manner. The main foundation of this framework is a scalable
tree-based overlay network. In fact, a Flux instance is a
complete instantiation of this overlay network along with
resource management and scheduling service modules that
are dynamically loaded into this overlay network, leveraging
its various communication idioms including publish-subscribe,
request-reply and push-pull as well as asynchronous event
handling. A Flux instance can spawn one or more child Flux
instances that can manage a subset of the parent’s resources,
and such a nesting can further recurse.

Flux’s software architecture is highly modular. The core
resource-management services such as heartbeat, remote
execution and key-value store are provided by a main

Global Sched 

A

Sched 1

B

Sched 1.1 Sched 1.2

Remote Execution

Sched Framework 
Scheduling

Policy Plugin B

Msg Idioms (RPC/Pub-Sub)

Overlay Networks
& Routing

Comms Message Broker

Service Module Plug-ins Protocol

Key-Value Store

Service Modules

Sched Framework 

Remote Execution

Key-Value Store

Scheduling 
Policy Plugin A

Service Modules

Pa
re

nt
 F

lu
x 

In
st

an
ce

C
hi

ld
 F

lu
x 

In
st

an
ce

Resource

Fig. 2: Flux framework

component called flux-core while the job scheduling service
is abstracted out into a separate component referred to as
flux-sched. At runtime, scheduling modules in flux-sched are
dynamically loaded into a Flux instance and handles all
the functionality common to scheduling for that instance. 1

flux-sched has an ability to load one or more scheduling
plugins that provide specific scheduling behaviors. They can
be user-defined or administrative, allowing the owner of the
Flux instance to specialize scheduling behaviors and policies
that are tailored to the target workflow. Fig. 2 shows
the modular architecture of Flux, and also depicts how the
Flux network can be organized to manage two schedulers at
different levels of the hierarchy, with a parent Flux instance
and a child Flux instance. We will discuss Flux’s fully
hierarchical scheduling model in detail in the subsections
below.

A. Scheduler Parallelism for Throughput Challenge

The hierarchical design of Flux provides ample parallelism
to overcome the job throughput challenge present in traditional
scheduling techniques. Under the hierarchical design of
Flux, any Flux instance can spawn child instances to aid
in scheduling, launching, and managing jobs. The parent
Flux instance grants a subset of its jobs and resources to
each child. This parent-child relationship, depicted in Fig.
2, can extend to an arbitrary depth and width, creating a
limitless opportunity for parallelization while avoiding the
high communication overhead of other distributed schedulers
(e.g., fully connected graphs of schedulers and all-to-all
communications). Parent and child instances communicate
using the Flux communication overlay network described
further in Section IV-C.

Our current implementation of hierarchical Flux consists
of three main design points: the scheduler hierarchy, the

1A Flux instance loaded with scheduler modules will be referred to as a
Flux scheduler instance or simply a scheduler instance when this distinction
can elucidate our concepts.



6

resource assignment, and the job distribution. For the
scheduler hierarchy, our implementation supports a hierarchy
of schedulers with a fixed size and shape. Ensemble workflow
managers or users specify the exact hierarchy size and shape
using JSON, which our implementation parses and uses to
launch the corresponding scheduler hierarchy automatically.
For the resource assignment, by default, our implementation
assigns a uniform number of resources to schedulers at
each level in the hierarchy (e.g., all of the leaf schedulers
are allocated the same number of cores). Non-uniform
assignments of resources are possible but require careful
consideration when distributing jobs.

To minimize the changes required for workflows to leverage
hierarchical Flux, the workflow manager submits each job in
the ensemble individually at runtime to the root scheduler
instance (as it would with a traditional scheduler), and then,
the jobs are distributed automatically across the hierarchy. In
this configuration, it may seem that the root instance will
become a bottleneck, but the work required to map and send
a job to a child scheduler is significantly less than the work
required to schedule and launch a job. After a job is submitted,
the root instance in the hierarchy must only consider tens
to hundreds of children, while a traditional scheduler must
consider thousands of cores as well as all other jobs in the
queue. Additionally, the job distribution at the root instance
can overlap with the scheduling and launching of jobs at the
leaf instances. For the job distribution, our implementation, by
default, uses round-robin to distribute jobs uniformly across
the scheduler hierarchy, but other distribution policies are
supported and can be implemented by users.

B. Scheduler Specialization Solves Co-scheduling Challenge
Flux’s user-driven, customizable approach to scheduling

provides inherent support for co-scheduling. Flux’s flexible
design allows users to decide whether or not co-scheduling
should be configured and also lets users choose their own
scheduling policies within the scope of an instance. With the
help of the job submission API, several tasks can efficiently
coexist on a single node without any restrictions on their
number, type, or resource requirements. This allows for
submission and tuning at all possible levels of heterogeneity
within a node (and across nodes), including individual cores,
a set of cores, sockets, GPUs, or burst buffers.

Users can also choose a policy within their Flux
instance. These can be simple policies, such as
first-come-first-serve/back-filling, and the infrastructure
can be easily extended to incorporate complex policies for
advanced management of resources such as I/O or power or
multiple constraints. Traditional resource managers do not
provide any such capability or extensible design to users,
resulting in underutilized resources and limited throughput.
While some workflows need exclusive scheduling per
node, other workflows may need co-scheduling or different
distributions of jobs between the resources available on a
node. Traditional RJMS software has no support for user-level
scheduling, which Flux addresses by design, giving users
the freedom to adapt to their instance to the needs and
characteristics of their particular application.

C. Rich APIs for Easy Job Coordination and Communication

Flux provides various communication idioms and APIs
to help solve the job coordination and communication
challenge. To support coordination within and across both Flux
instances and jobs, Flux provides primitives that encapsulate
the publish-subscribe (pub/sub), request-reply, and push-pull
communication patterns. These primitives allow individual
jobs within a workflow to synchronize without the use of ad
hoc methods like empty file creation on a POSIX-compliant
file system. Flux also provides several high-level services that
jobs and workflows can leverage: an in-memory key-value
store (KVS) and a job status/control (JSC) API.

The KVS provided by Flux enables jobs and workflow
managers to retrieve and store information scalably. One
example KVS use-case for workflows is accessing job
provenance data. All of a job’s metadata is stored in Flux’s
KVS, including the resources requested, the environment
variables used, and the contents of stdout and stderr.
The storage of the stdout and stderr enables workflow
managers to inspect a job’s output easily without requiring
expensive file system accesses. A specific feature of Flux’s
KVS, watcher callbacks, enables workflow managers to
ingest and analyze a job’s output efficiently as it is being
generated. Advanced workflows can leverage this real-time
output analysis to detect job failures as they happen and take
corrective actions, such as re-submitting the job for execution.

Traditional schedulers provide limited access to job status
information, most commonly through a slow and cumbersome
command line interface (CLI). Many workflow managers work
around this interface by tracking job states via extraneous file
creation. Flux’s JSC provides a fast, programmatic way to
receive job status updates, eliminating the use of the slow
CLI and tracking via the file system. JSC users can subscribe
to real-time job status updates, which are sent whenever a
job changes its state (e.g., from running to completed). This
allows workflow managers to stay up-to-date on the state of
their jobs with minimal overhead and without degrading file
system performance.

D. Consistent API Set for High Portability

To serve as the common, portable scheduling infrastructure,
Flux offers two main characteristics: 1) its APIs are consistent
across different platforms and 2) the porting and optimization
effort of Flux itself for a new environment is small. Creating
a Flux instance on a given environment only requires
the lower-level resource manager to provide the Process
Management Interface (PMI), or the user to provide a
configuration. Because PMI is the de facto standard for MPI
bootstrapping, the system resource managers (including Flux
itself) on a majority of HPC systems directly offer this
interface or else provide other variant interfaces such as PMIx
on top of which PMI can be easily implemented.

V. EVALUATING PERFORMANCE AND SCALABILITY

To demonstrate how Flux, with its fully hierarchical design,
addresses the throughput challenge, we measure the scheduler
throughput on real-world and stress-test ensemble workflows.



7

We measure throughput as the average number of jobs
ingested, scheduled, and launched per second (the higher,
the better). We schedule the workflows using three different
hierarchies: depth-1, depth-2, and depth-3 2. The depth-1
hierarchy only has a single scheduler instance that schedules
every job in the workflow, similar to existing schedulers like
SLURM and Moab. For the depth-2 hierarchy, we create a root
scheduler with one child scheduler for every node allocated
to the workflow, and we distribute the jobs equally among
the lowest level of schedulers (i.e., the leaf schedulers). For
the depth-3 hierarchy, we extend the hierarchy by adding one
scheduler for every core allocated to the workflow, and as
with the previous hierarchy, we distribute the workflow’s jobs
equally among the leaf schedulers. Our throughput evaluations
on both workflows use 32 nodes of an Intel Xeon E5-2695v4
cluster, each node with 36 physical cores and 128 GB of
memory.

To demonstrate the effects of hierarchical Flux on a
real-world workflow, we generated an ensemble workflow
with the Uncertainty Quantification Pipeline (UQP) [22]. Our
UQ ensemble simulates a semi-analytical inertial confinement
fusion (ICF) stagnation model that predicts the results of full
ICF simulations [27], [28], [29]. UQ ensembles with this
semi-analytical model typically consist of tens of thousands
of runs, but the scientists’ goal is to execute millions of jobs.

Fig. 3a shows the scheduler throughput of the three
hierarchies when applied to variably sized real-world UQ
ensemble workflows. For each ensemble size, we perform
the test three times and present the min, max, and median
job throughput values. As we increase the ensemble size,
the throughput of the depth-1 scheduler plateaus at 10
jobs/sec, artificially limiting the overall performance of the
ensemble workflow and creating idle resources. By adding
additional levels to the scheduler hierarchy (i.e., depth-2 and
depth-3) and thus increasing the scheduler parallelism, we can
improve the peak job throughput by an order of magnitude.
With a job throughput of 100 jobs/sec, the scheduler is
no longer on the critical path of the workflow and the
compute resources are 100% utilized. After the scheduler
throughput enhancements provided by hierarchical scheduling,
the ensemble workflow’s critical path now consists primarily
of the ensemble application’s runtime.

To demonstrate the throughput capabilities of hierarchical
Flux, unrestrained by the workflow application’s runtime, we
created a stress-test ensemble workflow in which each job exits
immediately after it launches (i.e., has a negligible runtime).
Fig. 3b shows the throughput of Flux on this stress-test
workflow. As before, for each ensemble size, we perform
the test three times and present the min, max, and median
job throughput values. No longer limited by the workflow
application’s runtime, the depth-2 and depth-3 hierarchies
achieve a peak throughput of 370 jobs/sec and 760 jobs/sec,
respectively. These represent a 23.5× and 48× increase
over the job throughput achieved by the traditional, depth-1
scheduler.

2Our model supports additional levels. In our evaluation, we use a
one-to-one mapping between hardware and scheduler levels.

VI. ENABLING EMERGING WORKFLOW MANAGEMENT
WITH FLUX

In this section, we describe how we improve the scheduling
and execution of real-world production workflows using Flux.
Our study targets both the workflow in MuMMI already
described in Section II and the Merlin workflow.

A. Specialization Addresses Challenges in MuMMI

Fig. 1b shows how the Flux infrastructure interacts with
the rest of the JDACS4C Pilot 2 multiscale infrastructure.
MuMMIs workflow manager instantiates the ML module,
which implements the latent space, and uses Maestro [19], [20]
to start and stop jobs accordingly. To handle the volume of
jobs and the required co-scheduling of resources, the team
developed a Maestro adapter to Flux.

The workflow manager is closely coupled to the macro
simulation, progressing each simulation frame as it is
generated. Each frame is decomposed into 300 patches, one for
each RAS in the simulations. Each patch is transformed into
the latent space and scored, based on its distance from those
patches that have already been simulated at the micro scale.
The workflow manager maintains a priority queue of the top n
candidate patches, and when new resources become available,
the queue is re-evaluated and a set of new patches for CG MD
simulation set-up (create micro sims) and/or production runs
(micro sims, ddcMD) scheduled.

This means that the primary scheduling objective required
from Flux is a simple first-come, first-served (FCFS) policy
tailored for high-throughput workload. Leveraging Flux’s
ability to specialize the scheduling policy and parameters
for each instance, MuMMI instantiates the preexisting FCFS
scheduling plugin with a scheduling parameter that further
optimizes the scheduler performance for high-throughput
workload. We specifically set the depth of the queue to one so
that the scheduler does not have to look ahead for later jobs to
schedule, an optimization of the FCFS policy that can improve
resource utilization without having to break the definition of
FCFS. (If the blocked highest priority job requires a compute
node without GPU while the next job requires a node with
GPU, the latter job can be scheduled without affecting the
schedulability of the first job.)

Production runs of MuMMI have used this flexibility to
tune the scheduler for higher performance for the particular
workload. That is, considering only a fewer jobs when making
a decision of what to run, which would be inappropriate for
a center-wide scheduler that must maintain fairness, but that
provides significant performance benefits for this application
and its high quantity of concurrent jobs.

Furthermore, as described in Section II, MuMMI must
schedule different type of jobs on a machine with
heterogeneous resources. Fig. 4 shows the resource utilization
for a typical, 2,040-node MuMMI run on Sierra. The MuMMI
workflow launches four different kinds of jobs on CPUs
only, and an additional type of job on some CPUs and
GPUs. A single dedicated node is used for the root of the
Flux master instance as well as 24 CPU cores of another
node to the MuMMI workflow manger (Fig. 4, gray and



8

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48

57
6

Number of jobs

1

10

100

1000

Sc
he

du
le

r 
Th

ro
ug

hp
ut

 (
jo

bs
/s

ec
)

Scheduler Hierarchy:
Depth-1
Depth-2
Depth-3

(a) UQ workflow

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48

57
6

Number of jobs

1

10

100

1000

Sc
he

du
le

r 
Th

ro
ug

hp
ut

 (
jo

bs
/s

ec
)

Scheduler Hierarchy:
Depth-1
Depth-2
Depth-3

(b) Stress test workflow

Fig. 3: Job throughput (in jobs/sec, on a logarithmic scale) for the depth-1, depth-2, and depth-3 scheduler hierarchies for
fixed-size clusters and differing numbers of total jobs (on a logarithmic scale)

G
P

U
s

Nodes

C
P

U
 c

or
es

1

4

3

2

40

10

20

30

1 2040500 1000 1500

micro sims
(ddcMD)

online anlysis

macro
sim create micro sims

Flux Workflow

Fig. 4: MuMMI utilization of heterogeneous resources: the CPU/GPU resource used by different MuMMI jobs are shown for
a typical run of 2,040 nodes on Sierra.

green, respectively). Other resources are split between the
macro simulation, creation of CG MD micro simulations, the
online analysis modules and the production macro simulation
run using ddcMD (Fig. 4, yellow, red, purple and blue,
respectively). This means that each node normally has nine
running jobs, one pure CPU (e.g. macro model or create
micro simulation) and eight jobs for the four different micro
simulations running on that node (one ddcMD on each of
the four GPUs and one online analysis for each ddcMD
simulation). Flux automatically discovers CPUs and GPUs
using libhwloc upon being instantiated and uses them
for scheduling. Therefore, setting the scheduling granularity
to CPU/GPU-level instead of exclusive node-level fulfilled
this co-scheduling requirement. Additionally, to speed up

scheduling and reduce the number of jobs needed to be
scheduled and maintained by the master Flux scheduler
instance, a child Flux instance was launched on every node
and the eight jobs related to the four micro simulations running
on each node are managed through this local instance.

Overall, during a simulation restart the MuMMI workflow
using Flux can fill all available resources on Sierra in less
than 1 hour, reaching a steady-state. Running on all of Sierra,
4,000 nodes, at peak all GPUs and CPUs were utilized,
16,000 GPUs and 176,000 CPU cores, running a full MuMMI
multiscale simulations with 16,000 CG MD simulation running
at the same time. The JDACS4C Pilot 2 team ran a huge
RAS multiscale simulation campaign on Sierra, described
in [8]. 300 RAS proteins were simulated on a square µm



9

plasma membrane at the macro scale for over 150 µs. Over
116,000 patches were selected from the macro simulation and
simulated at CG MD micro level with a total aggregated
time of 200 ms, orders of magnitude greater than comparable
studies. In total, the multiscale simulation campaign used
5.6 million GPU hours, the online analysis processed over
400,000,000 simulation frames, and for each simulation every
2 ns a snapshot was saved for later offline analysis resulting
in over 320 TB of data

B. Easy, Scalable Interaction with the Scheduler for Merlin

The Merlin workflow is a component of the Machine
Learning Strategic Initiative (MLSI) [2] at LLNL. Merlin’s
goal is to provide a python-based workflow that is adaptable
and efficient. This workflow runs an ensemble of simulations
and records the results while concurrently running machine
learning on the results as they become available. The
machine-learned model then helps steer the ensemble of
simulations as it improves with more data.

The workflow executes a variety of tasks to generate and
analyze the data. The first of these is defining the ensemble
of simulations. This ensemble consists of a set of samples
spanning the domain needed for creating a unique set of
data describing the domain. A simulation executable task will
accept the sample set as input parameters and produce data for
the machine-learning model. The simulation can range from
a simple ordinary differential equations (ODE) to a massively
parallel MPI rad-hydro simulation. These simulations may also
be run on many different platforms with different resource
managers and schedulers, where scheduling and launching the
simulations in a general manner becomes difficult.

The first version of the Merlin MPI parallel launch used
a simple python-based subprocess call to take a set of MPI
parameters such as the number of nodes and tasks and map
them onto the commands needed for a SLURM or IBM LSF
launch. This became a maintenance issue when each new
batch system required a set of runtime parameters that do not
map one to one between the various launch systems. In the
case of jsrun for LSF, the system did not handle nested
launches where there was one jsrun call for the allocation
and a subsequent jsrun call for the simulation. Some parallel
runs need GPU support and few CPU cores, while others
require only CPU cores. This requirement puts the onus on
the workflow to schedule resources for the various types of
parallel jobs.

In Merlin, Flux solves both the nesting issue and
co-scheduling issue through the use of a single Flux instance.
Jobs can be co-scheduled because this single instance is
tracking all of the resources with a GPU/CPU-level scheduling
policy. Nesting is not an issue due to this single instance.

In the Flux-based launch system for Merlin, the python
subprocess call was replaced with a Flux rpc_send with
a job.submit command that includes the environment
and resource request for this job. This Flux instance can be
augmented with a callback function that will be invoked on
each status change of the submitted job so the workflow can
be informed on all stages of the job submission: submitted,

Fig. 5: Flux Latency

completed, canceled, and failed. This information
can be sent back through the Merlin workflow to inform the
system on the state of the simulation task. This Flux interface
is independent of the native job launcher and provides a single
interface for the user to configure a simulation launch.

The Merlin tool has a number of components that can add
performance overhead in terms of starting the tasks within the
workflow. To characterize the latency for the Flux component
of the workflow, we define a simple timing procedure. Our
procedure is listed below:

• Compile a simple MPI hello world;
• Run the MPI hello world with varying input parameters;
• Run a python script to collect the job running overhead

of Flux from its key value store service.

We use the Rztopaz machine at LLNL to measure the
overheads. Rztopas is composed of 748 compute node, each
with two Intel Xeon E5-2695 CPUs and is connected with
Intel Omni-Path network. Each batch allocation runs a set of
Merlin worker threads to request tasks from the task server
that will be run on that allocation. An Rztopaz compute node
has a total of 36 compute cores so Merlin runs 36 worker
threads per node. On eight nodes, for instance, 288 threads
will be run. The latency is defined as the difference between
the time immediately before Flux’s job launch command
(flux-wreck) is invoked to the create time for each job.
This difference is added up for all the jobs that are scheduled
and executed in the end. The number of jobs or samples, run on
each node is the same as the number of worker threads, so all
samples can optimally run at the same time on the allocation
without having to contend for compute cores among them.
This also means that we use a weak scaling test where we
increase the number of jobs as we increase the number of
nodes being used for our experiments. Ideally, the experiment
at each compute node count contains the simulations that
would be completed in eight minutes if no scheduling or other
overheads are added.

Fig. 5 shows that Flux’s scheduling and launch performance
overhead only account for less than 5 percent at 32 nodes in



10

this configuration. Fig. 5 also shows that the increase in node
count results in an increase of the max time for jobs to create.
The time increase is relatively uniform (and as expected) up
to 16 nodes: the more jobs need to be launched and some
serial bottlenecks are hit. However, the 32-node run shows a
number of jobs with large discrepancies from the average. We
theorize that these are related to either the task server system
within the Merlin workflow or other Flux-related latency. More
experiments will need to be performed to determine the cause.
Regardless, as part of future work, we plan to reduce the
Flux-attributed overhead by exploring more Flux scheduler
parallelism, leveraging a deeper Flux hierarchy than a single
instance being used in this experiment.

C. Only Small Effort is Required to Gain Portability

We also evaluate the two main characteristics described
in Section IV-D by integrating Flux into Merlin across
two environments: LLNL’s large clusters with Intel Xeon
E5-2695v4, RedHat Enterprise Linux (RHEL) 7, and SLURM
being resource manager and scheduler; and LLNL’s Sierra
pre-exascale system with a completely different environment:
IBM POWER little endian, RHEL7, IBM JSM being the
resource manager and LSF the system scheduler.

We first designed and implemented our initial integration,
on one of LLNL’s Intel Xeon E5-2695v4 Linux clusters. Then,
we ported and customized Flux on Sierra while Merlin is being
tested on the Intel Xeon Linux systems. Flux’s porting efforts
on Sierra are mainly threefold.

• Port a PMI library to PMIX because the PMI library,
though a de facto standard, was not bundled with IBM’s
Spectrum MPI distribution;

• Compile our own libhwloc library to ensure GPUs
are correctly discovered and used in our scheduling (The
system-provided libhwloc was misconfigured such
that its discovered GPU was not marked as Co-Processor,
an attribute required for any scheduler to identify its
element as a schedulable compute entity);

• Create an MPI plug-in within Flux for IBM Spectrum
MPI to hide the passing of various environment variables
to each MPI job in order to assist its bootstrapping.

While they require some communications with IBM, once
the proper porting path is set, implementing these required
changes was trivial.

Once Flux has been ported, porting Merlin code to
Flux on the new platform required only minimal changes.
While Merlin still uses Sierra’s resource manager specific
launcher (jsrun) to bootstrap a Flux instance per each batch
allocation, once the instance is bootstrapped, Merlin uses
the same Flux API and commands to perform its workflow.
Further, Flux has been installed in public locations on both
environments to further assist other workflows with portability.

VII. RELATED WORK

This section presents a summary of the existing system and
user-level solutions to workflow scheduling.

A. System-level Solutions

System-level solutions can be broken down into centralized,
limited hierarchical, and decentralized schedulers. Centralized
schedulers use a single, global scheduler that maintains
and tracks the full knowledge of jobs and resources to
make scheduling decisions. This scheduling model is simple
and effective for moderate-size clusters, making it the state
of the practice in most cloud and HPC centers today.
Cloud schedulers such as Swarm [24] and Kubernetes [25]
and HPC schedulers such as SLURM [9], MOAB [11],
IBM LSF [10], and PBSPro [12] are centralized. While
simple, these centralized schedulers are capped at tens of
jobs/sec [30], provide limited to no support for co-scheduling
of heterogeneous tasks [31], have limited APIs, and cannot be
easily nested within other system schedulers.

Limited hierarchical scheduling has emerged predominantly
in grid and cloud computing. This scheduling model
uses a fixed-depth scheduler hierarchy that typically
consists of two levels. The scheduling levels consist of
independent scheduling frameworks stacked together, relying
on custom-made interfaces to make them interoperable.
Example implementations include the cloud computing
schedulers Mesos [32] and YARN [33] as well as the
grid schedulers Globus [34] and HTCondor [35]. Efforts to
achieve better scalability in HPC have resulted in this model’s
implementation in some large HPC centers. For example, at
LLNL multiple clusters are managed by a limited hierarchical
scheduler that uses the MOAB grid scheduler on top of
several SLURM schedulers, each of which manages a single
cluster [36]. While this solution increases throughput over
centralized scheduling, it’s ultimately limited by its shallow
hierarchy and the capabilities of the scheduling frameworks
used at the lowest levels. In the case of LLNL example, all of
the co-scheduling, coordination, and portability limitations of
SLURM still apply.

Decentralized scheduling is the state-of-the-art in theoretical
and academic efforts, but, contrary to centralized scheduling,
it has not gained traction. To the best of our knowledge,
decentralized schedulers are not in use in any production
environment. Sparrow [37], in cloud computing, and
SLURM++ [38] and Swift/T [39], in HPC, are existing
decentralized schedulers. In decentralized scheduling, multiple
schedulers each manage a disjoint subset of jobs and
resources. The schedulers are fully connected and thus can
communicate with every other scheduler. In this model,
a scheduler communicates with other schedulers when
performing work stealing and when allocating resources
outside of its resource set (i.e., resources managed by
another scheduler). Despite providing higher job throughput,
decentralized schedulers suffer from many of the same
problems as centralized schedulers: little to no support
for co-scheduling of heterogeneous tasks and limited APIs.
Additionally, cloud schedulers commonly make assumptions
about the types of applications being run to improve
performance. For example, Sparrow assumes that a common
computational framework, such as Hadoop or Spark, is used by
most of the jobs, enabling the use of long-running framework



11

processes and lightweight tasks over short-lived processes and
large application binaries [37].

B. User-level Solutions

User-level solutions can be broken down into
application-level runtimes and workflow managers.
Application-level runtimes work by offloading a majority
of the task ingestion, scheduling, and launching from
the batch job scheduler onto a user-level runtime. These
application-level runtimes are typically much simpler and
less sophisticated than the complex system-level schedulers
described in VII-A but in exchange provide extremely high
throughput. For example, CRAM provides no support for
scheduling (i.e., once a task completes, the resources remain
idle until all other tasks have completed), tasks requiring
GPUs, or an API to query the status of tasks, but it can
launch ~1.5 million tasks in ~19 minutes, resulting in an
average job throughput of ~1,200 jobs/sec [40].

Workflow managers are designed to ease the composition
and execution of complex workflows on various computing
infrastructures, including HPC, grid, and cloud resources [41].
Example workflow managers include Pegasus [42],
DAGMan [43], and the UQ Pipeline [22]. Workflows
can be represented as a directed acyclic graph (DAG), as
is the case with Pegasus and DAGMan, or a parameter
sweep, as is the case with the UQP. Once the workflow has
been specified by the user, the workflow manager handles
moving data between and submitting the tasks to the various
computing resources. Workflow managers provide an interface
for users to track the status of their workflow, and provide
portability across many types of computing infrastructures.
While the use of a workflow manager can improve the
overall workflow throughput by taking advantage of multiple,
independent computing resources (e.g., clusters), they do not
improve the job throughput or co-scheduling capabilities of
any individual computing resource. Additionally, to submit
and manage jobs in a portable way, many workflow managers
incur expensive side-effects, such as the creation of millions
of job status files [44].

VIII. CONCLUSION

Emerging scientific workflows present several system-level
challenges. These include, but are not limited to, throughput,
co-scheduling, job coordination/communication and
portability across HPC systems. In this paper, we took
a deep dive into upcoming workflows and described these
four specific challenges that are becoming increasingly
commonplace across modern workflows. Specifically, we
show three workflow examples, MuMMI, the Uncertainty
Quantification Pipeline, and the MLSI Merlin workflow.
We then presented Flux, a hierarchical and open-source
resource management and scheduling framework, as a
common infrastructure that can address these challenges
flexibly and efficiently. The core of Flux lies in its ability
to be nested seamlessly within batch allocations created by
other schedulers as well as itself. Once a hierarchy of Flux
instance is created within each allocation, the rich set of

well-defined, platform-independent APIs efficiently support
advanced workflows that can often feature non-traditional
execution patterns. Our results show the performance
and functionality benefits of our approach as applied to
various exascale workflow challenges. Future work involves
performing diverse explorations in the directions of the
workflow challenges that we presented in this paper, which
includes developing a deeper understanding on the effect of
scheduling specialization on more diverse sets of workflows,
as well as enriching our scheduling infrastructure to support
heterogeneous and multi-constraint resources with the help of
an advanced data model.

ACKNOWLEDGMENT

We thank JDACS4C Pilot 2 team. Part of this work has
been supported by the JDACS4C program established by
the U.S. Department of Energy (DOE) and the National
Cancer Institute (NCI) of the National Institutes of Health.
For computing time, we thank Livermore Computing (LC)
and Livermore Institutional Grand Challenge. This work
was performed under the auspices of the U.S. Department
of Energy by LLNL under contract DE-AC52-07NA27344
(LLNL-CONF-756663).

REFERENCES

[1] S. H. Langer, B. Spears, J. L. Peterson, J. E. Field, R. Nora, and
S. Brandon, “A hydra uq workflow for nif ignition experiments,”
in Proceedings of the 2Nd Workshop on In Situ Infrastructures for
Enabling Extreme-scale Analysis and Visualization, ser. ISAV ’16.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ISAV.2016.6

[2] J. L. Peterson, “Machine learning aided discovery of a new nif design,”
Lawrence Livermore National Laboratory, August 2018.

[3] D. Wang1, X. Luo2, F. Yuan1, and N. Podhorszki, “A data analysis
framework for earth system simulation within an in-situ infrastructure,”
Journal of Computer and Communications, vol. 5, no. 14, pp. 76–85,
Dec. 2017. [Online]. Available: http://www.scirp.org/journal/doi.aspx?
DOI=10.4236/jcc.2017.514007

[4] M. Dorier, J. M. Wozniak, and R. Ross, “Supporting task-level
fault-tolerance in hpc workflows by launching mpi jobs inside
mpi jobs,” in Proceedings of the 12th Workshop on Workflows
in Support of Large-Scale Science, ser. WORKS ’17. New
York, NY, USA: ACM, 2017, pp. 5:1–5:11. [Online]. Available:
http://doi.acm.org/10.1145/3150994.3151001

[5] D. Higdon, R. Klein, M. Anderson, M. Berliner, C. Covey, O. Ghattas,
C. Graziani, S. Habib, M. Seager, J. Sefcik, P. Stark, and J. Stewart,
“Uncertainty quantification and error analysis,” U.S. Department of
Energy, Office of National Nuclear Security Administration, and the
Office of Advanced Scientific Computing Research, Tech. Rep., Jan
2010.

[6] L. L. N. Laboratory, “Sierra,” https://hpc.llnl.gov/hardware/platforms/
sierra, Lawrence Livermore National Laboratory, August 2018, retrieved
July 30, 2018.

[7] O. R. N. Laboratory, “Summit,” https://www.olcf.ornl.gov/summit/, Oak
Ridge National Laboratory, August 2018, retrieved July 30, 2018.

[8] F. Di Natale, H. Bhatia, T. S. Carpenter, C. Neale, S. K. Schumacher,
T. Oppelstrup, L. Stanton, X. Zhang, S. Sundram, T. R. W. Scogland,
G. Dharuman, M. P. Surh, Y. Yang, C. Misale, L. Schneidenbach,
C. Costa, C. Kim, B. D’Amora, S. Gnanakaran, D. V. Nissley,
F. Streitz, F. C. Lightstone, P.-T. Bremer, J. N. Glosli, and H. I.
Ingólfsson, “A massively parallel infrastructure for adaptive multiscale
simulations: Modeling ras initiation pathway for cancer,” in To
appear in Supercomputing ’19: The International Conference for High
Performance Computing, ser. SC ’19, 2019.

[9] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple linux
utility for resource management,” in Proceedings of the 9th International
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
June 2003.

https://doi.org/10.1109/ISAV.2016.6
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jcc.2017.514007
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jcc.2017.514007
http://doi.acm.org/10.1145/3150994.3151001
https://hpc.llnl.gov/hardware/platforms/sierra
https://hpc.llnl.gov/hardware/platforms/sierra
https://www.olcf.ornl.gov/summit/


12

[10] “IBM spectrum LSF,” https://www.ibm.com/, 2017, retrieved April 03,
2017.

[11] “The Moab workload manager,” http://www.adaptivecomputing.com/,
2017, retrieved April 03, 2017.

[12] “PBSPro: An HPC workload manager and job scheduler for desktops,
clusters, and clouds,” https://github.com/PBSPro/pbspro, Altair, 2018,
retrieved August 8, 2018.

[13] I. A. Prior, P. D. Lewis, and C. Mattos, “A comprehensive survey of ras
mutations in cancer,” Cancer Research, vol. 72, no. 10, pp. 2457–2467,
2012.

[14] “MOOSE,” https://moose.inl.gov/SitePages/Home.aspx.
[15] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A.

Gunnels, and F. H. Streitz, “Extending stability beyond cpu millennium:
A micron-scale atomistic simulation of kelvin-helmholtz instability,” in
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, ser.
SC ’07, 2007.

[16] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and
E. Lindahl, “Gromacs: High performance molecular simulations through
multi-level parallelism from laptops to supercomputers,” SoftwareX, vol.
1-2, pp. 19 – 25, 2015.

[17] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and
A. H. de Vries, “The MARTINI Force Field: Coarse Grained Model
for Biomolecular Simulations,” The Journal of Physical Chemistry
B, vol. 111, no. 27, pp. 7812–7824, Jul. 2007. [Online]. Available:
https://pubs.acs.org/doi/10.1021/jp071097f

[18] T. A. Wassenaar, H. I. Ingólfsson, R. A. Böckmann, D. P. Tieleman, and
S. J. Marrink, “Computational Lipidomics with insane: A Versatile Tool
for Generating Custom Membranes for Molecular Simulations,” Journal
of Chemical Theory and Computation, vol. 11, no. 5, pp. 2144–2155,
May 2015.

[19] F. D. Natale, “Maestro workflow conductor (maestrowf),” https://
github.com/LLNL/maestrowf, Lawrence Livermore National Laboratory,
August 2018, retrieved Aug 11, 2018.

[20] T. S. Carpenter, C. A. Lopez, C. Neale, C. Montour, H. I.
Ingólfsson, F. Di Natale, F. C. Lightstone, and S. Gnanakaran,
“Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined
Martini Coarse-Grained Force Field.” Journal of Chemical Theory and
Computation, vol. 14, no. 11, pp. 6050–6062, Nov. 2018.

[21] L. Schneidenbach, C. Misale, B. D’Amora, and C. Costa, “Ibm data
broker,” https://github.com/IBM/data-broker, 2019.

[22] T. L. Dahlgren, D. Domyancic, S. Brandon, T. Gamblin, J. Gyllenhaal,
R. Nimmakayala, and R. Klein, “Poster: Scaling uncertainty
quantification studies to millions of jobs,” in Proceedings of the 27th
ACM/IEEE International Conference for High Performance Computing
and Communications Conference (SC), November 2015.

[23] L. L. N. Laboratory, “Non-intrusive uncertainty quantification: Psuade,”
https://computation.llnl.gov/projects/psuade-uncertainty-quantification/,
Lawrence Livermore National Laboratory, August 2018, retrieved
August 3, 2018.

[24] “Swarm: a docker-native clustering system,” https://github.com/docker/
swarm, Docker Inc., 2017, retrieved April 03, 2017.

[25] “Kubernetes by Google,” http://kubernetes.io, 2017, retrieved April 03,
2017.

[26] J. Gyllenhaal, T. Gamblin, A. Bertsch, and R. Musselman, “Enabling
high job throughput for uncertainty quantification on bg/q,” in IBM HPC
Systems Scientific Computing User Group, ser. ScicomP’14, Chicago, IL,
2014.

[27] J. Gaffney, P. Springer, and G. Collins, “Thermodynamic modeling of
uncertainties in NIF ICF implosions due to underlying microphysics
models,” Bulletin of the American Physical Society., October 2014.

[32] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-grained
Resource Sharing in the Data Center,” in Proc. of the 8th USENIX
Conference on Networked Systems Design and Implementation,
ser. NSDI’11. Berkeley, CA, USA: USENIX Association, 2011,

[28] J. Gaffney, D. Casey, D. Callahan, E. Hartouni, T. Ma, and B. Spears,
“Data driven models of the performance and repeatability of NIF high
foot implosions,” Bulletin of the American Physical Society., November
2015.

[29] “Inertial confinement fusion,” https://en.wikipedia.org/wiki/Inertial
confinement fusion, Wikipedia, 2017, retrieved August 22, 2017.

[30] K. Wang, “Slurm++: A distributed workload manager for extreme-scale
high-performance computing systems,” http://www.cs.iit.edu/∼iraicu/
teaching/CS554-S15/lecture06-SLURM++.pdf, Feb 2015.

[31] “SLURM heterogeneous jobs: Limitations,” https://slurm.schedmd.com/
heterogeneous jobs.html#limitations, SchedMD, Dec 2017, retrieved
August 8, 2018.
pp. 295–308. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1972457.1972488

[33] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet Another Resource Negotiator,” in Proceedings
of the 4th Annual Symposium on Cloud Computing, ser. SOCC ’13.
New York, NY, USA: ACM, 2013, pp. 5:1–5:16. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633

[34] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit,” International Journal of High Performance Computing
Applications, vol. 11, no. 2, pp. 115–128, Jun. 1997. [Online].
Available: http://dx.doi.org/10.1177/109434209701100205

[35] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor – a
distributed job scheduler,” in Beowulf Cluster Computing with Linux,
T. Sterling, Ed. MIT Press, October 2001.

[36] B. Barney, “Slurm and moab,” https://computing.llnl.gov/tutorials/moab,
Lawrence Livermore National Laboratory, August 2017, retrieved
August 22, 2017.

[37] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP), November 2013.

[38] X. Zhou, H. Chen, K. Wang, M. Lang, and I. Raicu, “Exploring
distributed resource allocation techniques in the SLURM job
management system,” Illinois Institute of Technology, Department of
Computer Science, Tech. Rep., 2013.

[39] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk,
and I. T. Foster, “Swift/t: Large-scale application composition via
distributed-memory dataflow processing,” in Proceedings of the 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, ser. CCGrid, May 2013, pp. 95–102.

[40] J. Gyllenhaal, T. Gamblin, A. Bertsch, and R. Musselman, “Enabling
high job throughput for uncertainty quantification on BG/Q,” in IBM
HPC Systems Scientific Computing User Group (ScicomP), May 2014.

[41] J. Yu and R. Buyya, “A taxonomy of workflow management systems
for grid computing,” Journal of Grid Computing, vol. 3, no. 3,
pp. 171–200, Sep 2005. [Online]. Available: https://doi.org/10.1007/
s10723-005-9010-8

[42] E. Deelman, G. Singh, M. hui Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: a framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming, vol. 13,
no. 3, pp. 219–237, Dec 2005.

[43] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, Workflow
Management in Condor. London: Springer London, 2007, pp. 357–375.
[Online]. Available: https://doi.org/10.1007/978-1-84628-757-2 22

[44] S. Hebrein, T. Patki, D. H. Ahn, D. Lipari, T. Dahlgren, D. Domyancic,
and M. Taufer, “Poster: Fully hierarchical scheduling: Paving the
way to exascale workloads,” in Proceedings of the 29th ACM/IEEE
International Conference for High Performance Computing and
Communications Conference (SC), November 2017.

https://www.ibm.com/
http://www.adaptivecomputing.com/
https://github.com/PBSPro/pbspro
https://moose.inl.gov/SitePages/Home. aspx
https://pubs.acs.org/doi/10.1021/jp071097f
https://github.com/LLNL/maestrowf
https://github.com/LLNL/maestrowf
https://github.com/IBM/data-broker
https://computation.llnl.gov/projects/psuade-uncertainty-quantification/
https://github.com/docker/swarm
https://github.com/docker/swarm
http://kubernetes.io
https://en.wikipedia.org/wiki/Inertial_confinement_fusion
https://en.wikipedia.org/wiki/Inertial_confinement_fusion
http://www.cs.iit.edu/~iraicu/teaching/CS554-S15/lecture06-SLURM++.pdf
http://www.cs.iit.edu/~iraicu/teaching/CS554-S15/lecture06-SLURM++.pdf
https://slurm.schedmd.com/heterogeneous_jobs.html#limitations
https://slurm.schedmd.com/heterogeneous_jobs.html#limitations
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://doi.acm.org/10.1145/2523616.2523633
http://dx.doi.org/10.1177/109434209701100205
https://computing.llnl.gov/tutorials/moab
https://doi.org/10.1007/s10723-005-9010-8
https://doi.org/10.1007/s10723-005-9010-8
https://doi.org/10.1007/978-1-84628-757-2_22

	Introduction
	A Motivational Example
	The Multiscale Machine-Learned Modeling Infrastructure
	Complex Execution Patterns Examplified by MuMMI

	Challenges in Workflow Scheduling
	Throughput Challenge
	Co-scheduling Challenge
	Job coordination and communication Challenge
	Portability Challenge

	Flux
	Scheduler Parallelism for Throughput Challenge
	Scheduler Specialization Solves Co-scheduling Challenge
	Rich APIs for Easy Job Coordination and Communication
	Consistent API Set for High Portability

	Evaluating Performance and Scalability
	Enabling Emerging Workflow Management with Flux
	Specialization Addresses Challenges in MuMMI
	Easy, Scalable Interaction with the Scheduler for Merlin
	Only Small Effort is Required to Gain Portability

	Related Work
	System-level Solutions
	User-level Solutions

	Conclusion
	References

