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ABSTRACT
The economics of flash vs. disk storage is driving HPC
centers to incorporate faster solid-state burst bu↵ers into
the storage hierarchy in exchange for smaller parallel file
system (PFS) bandwidth. In systems with an underprovi-
sioned PFS, avoiding I/O contention at the PFS level will
become crucial to achieving high computational e�ciency.
In this paper, we propose novel batch job scheduling tech-
niques that reduce such contention by integrating I/O aware-
ness into scheduling policies such as EASY backfilling. We
model the available bandwidth of links between each level
of the storage hierarchy (i.e., burst bu↵ers, I/O network,
and PFS), and our I/O-aware schedulers use this model to
avoid contention at any level in the hierarchy. We integrate
our approach into Flux, a next-generation resource and job
management framework, and evaluate the e↵ectiveness and
computational costs of our I/O-aware scheduling. Our re-
sults show that by reducing I/O contention for underpro-
visioned PFSes, our solution reduces job performance vari-
ability by up to 33% and decreases I/O-related utilization
losses by up to 21%, which ultimately increases the amount
of science performed by scientific workloads.
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1. INTRODUCTION
High performance storage is critical to achieving compu-

tational e�ciency on high performance computing (HPC)
systems. For over a decade, HPC has met this need by sepa-
rating compute systems from parallel file systems (PFS) [25,
14, 32] that are built from an array of disks for both capac-
ity and bandwidth. As the capacity growth of disks con-
tinues to outpace increases in their bandwidth, disks will
meet capacity demands but fail to deliver bandwidth cost-
e↵ectively [12, 5]. Large HPC centers have begun to face
this challenge by using solid-state burst bu↵ers [23, 31], a
new storage media that is cost-e↵ective for bandwidth while
not yet viable for capacity, between the compute nodes and
the PFS. As HPC applications alternate between computa-
tionally dominant and I/O-dominant execution phases, the
burst bu↵ers can absorb their bursty I/O requests and turn
them into a constant I/O stream, as seen by the PFS. This
approach can not only o↵er better performance for the appli-
cations but also reduce the requisite PFS bandwidth. The
PFS no longer needs to be provisioned for the worse-case
scenario where multiple jobs happen to enter their I/O-
dominant phases simultaneously. This trend is already ap-
parent in recent leadership-class system procurements [1].
Next-generation systems will deliver 7 to 10⇥ higher peak
floating-point performance with only 1 to 2⇥ higher PFS
bandwidth compared to previous generation systems [18,
28]. The underprovisioning level is expected to increase,
as system software technologies (e.g., smart checkpoint stag-
ing) will more e↵ectively exploit the burst bu↵ers. Similarly,
a desire for global mounts (i.e., mounting all of the PFSes on
all of the clusters) [33, 19] will increasingly split the already
underprovisioned bandwidth across multiple clusters.

This paper targets next-generation HPC centers charac-
terized by large-scale systems with burst bu↵ers, reduced
I/O network bandwidth, and underprovisioned PFS band-
width. These characteristics require scheduling techniques



that use I/O awareness to make informed decisions at the
batch scheduling level and reduce PFS contention caused by
over-allocated I/O resources. Unfortunately, the dynamicity
and uncertainty of batch jobs (i.e., which jobs happen to be
scheduled and burst into I/O phases) as well as the sheer
scale of the largest centers have long made the definition of
e↵ective, yet scalable, I/O-aware scheduling a hard problem
to solve. As a result, I/O awareness within batch sched-
ulers in use for today’s large centers remains largely rudi-
mentary (e.g., Moab [2] can only hold dependent jobs when
a file system is marked as being down). Our work tack-
les the I/O-aware scheduling problem within batch sched-
ulers and complements existing work that manages the I/O
contention problem by coordinating and optimizing the I/O
performed at runtime [9, 34, 10, 36]. While these runtime
techniques have shown promising results at maximizing the
use of the PFS and minimizing I/O contention, they are
ultimately constrained by the I/O requests of the specific
running applications. If many I/O-intensive jobs are run-
ning concurrently, these runtime techniques are unable to
prevent a slowdown of the applications. On the other hand,
because we tackle I/O contention at batch job scheduling
time, our work prevents applications’ slowdown by ensuring
that many I/O-intensive jobs are not run concurrently.

Our I/O-aware scheduling takes advantage of two emerg-
ing technologies for next-generation systems: (1) burst
bu↵ers and (2) center-wide resource management and job
scheduling frameworks. The burst-bu↵er layer absorbs ran-
dom I/O bursts and thus makes the bandwidth require-
ment of a job constant over its lifetime. A center-wide re-
source and job management framework enables schedulers
to model the global I/O subsystem and view jobs beyond
cluster boundaries, enabling global scheduling decisions for
shared file systems. We integrate the knowledge of the I/O
subsystem including burst bu↵ers and I/O-aware algorithms
directly into Flux [4], one of the few resource and job man-
agers for next-generation centers. Exploiting a global view
in Flux, however, comes with multidimensional scale chal-
lenges. Our hierarchical representation of the system must
cope with unprecedented numbers of jobs and individual
resources. By using a Flux emulator, this paper explores
the e↵ectiveness and costs of this large-scale constrained
scheduling. Our exploration includes the degree of resource
utilization under the I/O-aware scheduling as well as the
computational costs of the scheduling itself, as it must con-
sider both compute nodes and available bandwidth at every
level of the I/O hierarchy. Specifically, the paper makes the
following contributions:

• Modeling of the hierarchical nature of real-world I/O
subsystems using a resource description language;

• Scheduling algorithms that integrate I/O awareness as
a driving scheduling factor into one of the most popular
scheduling policies (i.e., EASY backfilling);

• Exploration of the cost-e↵ectiveness space of I/O-
aware scheduling relative to the I/O-ignorant base-
lines.

Our results show that by reducing I/O contention for un-
derprovisioned PFSes, our solution reduces job performance
variability by 33% and decreases I/O-related utilization
losses by 21% on a system underprovisioned by 30%. In ad-
dition, our solution o↵ers these benefits over I/O-ignorant

scheduling policies with negligible scheduling cost, making
deployment of our solution practical for next-generation en-
vironments.

The rest of this paper is organized as follows: Section 2
explains the need for I/O awareness; Section 3 presents our
I/O subsystem model and I/O-aware scheduling algorithms;
Section 4 describes the Flux emulator along with the system
and workload models used in our tests; Section 5 presents
the results of our tests and demonstrates the benefits of I/O-
aware scheduling; Section 6 discusses related work; and Sec-
tion 7 concludes this paper.

2. NEED FOR I/O AWARENESS
Due to the economics of flash vs. disk storage media,

the HPC community has long predicted that flash-based
burst bu↵ers (BBs) must be included in the next-generation
storage hierarchy, and recent high-end system procurements
have attested to this prediction [1, 3, 23, 31, 24]. Initially,
burst bu↵er enabled systems [3, 1] will still provision a rea-
sonably high bandwidth PFS to ensure expedient draining
of jobs’ last checkpoints from the burst bu↵ers to the PFS.
This will allow a quick turnaround time even though, for
simplicity, the system may require draining a job’s burst
bu↵ers before scheduling the following job. Over time, smart
staging, in conjunction with advancements in relevant sys-
tem software, will remove this requirement. The system will
stage the new job’s data into the burst bu↵ers while the pre-
vious job’s last checkpoint is still being drained to the PFS,
hiding the latency [21]. With the support of BB and smart
staging, the PFS and the I/O links no longer need to be
provisioned for worst-case scenarios (i.e., the I/O-dominant
phases of many independent jobs overlap). Instead, the I/O
links and the PFS will be provisioned to handle the average
case (i.e., the average egress bandwidth of the burst bu↵ers).
Under this scenario, when multiple data-intensive applica-
tions run in concert on a cluster that has burst bu↵ers and
uses I/O-ignorant scheduling, the applications’ cumulative
average bandwidths can exceed the PFS bandwidth, caus-
ing I/O contention. In other words, the applications spend
time blocking on I/O rather than performing computation.

With a significantly underprovisioned PFS, it will be cru-
cial to avoid scheduling any combination of jobs that can cre-
ate I/O contention at the lower storage levels. Fortunately,
next-generation technologies present a practical opportunity
to address this challenge at the batch job scheduling layer
through I/O-aware scheduling.

3. I/O-AWARE JOB SCHEDULING
This section describes our approach. We begin with the

enablers of our approach and progressively add core tech-
niques until we can fully describe our methodology.

3.1 Constant Job-Lifetime I/O Bandwidth
Researchers have long observed that the common I/O pat-

terns of HPC applications are bursty: they alternate be-
tween computationally dominant and I/O-dominant execu-
tion phases. Thus, the actual bandwidth used by a job dur-
ing its lifetime is not a quantity that can easily be sched-
uled. Even if a batch system schedules jobs in accordance
with their average bandwidth, the I/O dominant execution
phases of these jobs can still often overlap, and utilization
can oscillate widely, often exceeding the threshold. Burst



bu↵ers (BBs) naturally address this challenge: they turn
the bursty I/O requests into a constant I/O stream. The
BB layer absorbs applications’ I/O bursts and the applica-
tions’ I/O requests are then drained in the background into
the parallel file system (PFS) from the BBs. As also pro-
posed in [27], we assume that the BBs are placed either at
the compute nodes (CNs) or on the same high-speed inter-
connect as the CNs, thus minimizing the probability of I/O
contention occuring on resources in-between the CNs and
the BBs. This architectural assumption allows us to focus
our study on the I/O contention in-between the BBs and
the PFS. In the rest of this paper, when we refer to I/O
contention between the nodes and the PFS, we mean the
CNs+BBs and the PFS.

The BB write-behind scheme is the first enabler for the
design and implementation of practical I/O-aware schedul-
ing. Batch job schedulers can use the draining rate of the
BB as the overall bandwidth requirement of a job, a con-
stant that machine learning algorithms trained on historical
job records can provide. Work of McKenna and coworkers
indicates that by using decision trees, we can predict, within
16MB, the I/O produced over the lifetime of a job, 80% of
the time [26].

3.2 Global View
With a strong desire to mount a PFS to multiple clus-

ters [33, 19], e↵ective I/O-aware schemes also require a
global view over all compute resources from which jobs can
access the PFS. Without global knowledge, many jobs from
multiple scheduler domains can request the shared resources
concurrently, which precludes the scheduler from being able
to manage bandwidth allocation reliably. Thus, practical
schemes need advanced resource and job management soft-
ware (RJMS) that can provide the scheduler with visibil-
ity into both jobs and resources across system boundaries.
Fortunately, demand has grown to have an RJMS to sched-
ule jobs at levels above these boundaries using hierarchical
approaches. Flux [4] is among a few of the already avail-
able next-generation resource and job management software
systems. Being developed at Lawrence Livermore National
Laboratory (LLNL), Flux responds to the aforementioned
need and presents an opportunity for our methodology to
be developed.

3.3 I/O Subsystem Modeling
Using these enablers (i.e., burst bu↵ers and Flux), we first

model the full I/O subsystem including the BBs and I/O
switches into the RJMS so that our scheduler can reason
about key bandwidth constraints. We consider an I/O ar-
chitecture based on an approach used by the Tri-Laboratory
Linux Capacity Cluster (TLCC) 1. A TLCC cluster is built
on the notion of a scalable unit (SU). A large cluster can
be built by scaling out and replicating SUs, each of which
consists of a certain number of compute nodes, a few gate-
way nodes that can route I/O tra�c to global parallel file
system, and one or two login nodes. A multilevel system of
switches connects nodes within a single SU and across SUs.
For example, at LLNL, an SU is composed of 154 compute
nodes, 6 gateway nodes, and 2 login nodes; one or mul-
tiple high level Infiniband switches connect multiple lower

1Tri-Laboratory refers to the NNSA’s (National Nuclear Se-
curity Agency) three national laboratories: Livermore, San-
dia, and Los Alamos National Laboratory.

level Infiniband switches. Figure 1 shows an example of a
TLCC cluster containing 12 SUs with its low and high level
switches.

SU0 SU1 … …. SU12 

1" 2" 3" 4" 5" 6" 7" 8" 9" 107" 108"

1" 2" 3"

18 18 18 
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Switches%
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Figure 1: Example of 12 SU cluster with high and low level
switches.

Any e↵ective job scheduling is based on a rigorous but
e�cient model of the cluster resources and must include the
resource relationships pertaining to the scheduler’s capabil-
ities. In the case of I/O-aware scheduling, a resource model
must also capture the essential attributes of the I/O sub-
system of clusters in addition to their compute resources
(e.g., compute nodes and cores). We use the Resource De-
scription Language (RDL) within Flux [4] to model the I/O
subsystems as a hierarchy of network switches and gate-
way nodes leading to a parallel file system (PFS) and es-
tablish hierarchical relationships between them. Figure 2
shows a simple example of an RDL-based model with its
compute nodes, each with a BB at the fringes of the hi-
erarchy. Nodes are connected to their leaf switches before
accessing the PFS through the gateway nodes (e.g., in the
case of Lustre file system, LNET routers run across the gate-
way nodes). Since I/O tra�c is routed round-robin across
the high-level switches and the gateway nodes, we aggre-
gate these resources into pools, where the BW of the pool is
the sum of the individual resources’ BWs. This model still
matches well with the high-level architecture of a TLCC SU
as shown in Figure 1, maintains a reasonable computational
cost, and can easily be extended when multiple large clusters
share a PFS.

When modeling how a job’s I/O a↵ects the I/O hierarchy
and vice versa, we consider each level in the I/O hierarchy
(i.e., PFS, switches, and compute nodes). When placing a
job on the I/O hierarchy, BW is allocated at every level in
the hierarchy. When modeling the impact of the I/O hier-
archy on a job’s I/O BW, we consider both the state of the
I/O hierarchy and the job’s position within the hierarchy
using a contention model described in detail in Section 4.4.
Figure 3 shows an example of I/O contention for the hierar-
chical resources considered in Figure 2 when two jobs with
di↵erent BW requirements are executed. In Figure 3, Job1
runs on three nodes. Job1’s required I/O rate is 192 MB/s
per process, while the upper limit of the low level switches
is only 256 MB/s (or 128 MB/s per child). If we assume
that Job1’s I/O pattern is highly synchronous, which is a
dominant I/O pattern at HPC centers [23], Job1’s overall
I/O rate is limited to 128 MB/s, despite one of its processes



Figure 2: Example of an I/O-resource hierarchy in RDL.

having access to the full 192 MB/s. Job1 is over-utilizing
bandwidth not only at the low level switches but at the
higher level switches. If a new job, Job2 arrives and tries
to use additional bandwidth, on the higher level switch, the
job can further steal BW from Job1. Our tests inject job
arrivals and their bandwidth requests into the models that
represent real clusters at LLNL in a similar but larger scale
than in the example presented above.

Figure 3: Example of I/O contention in action for our I/O-
resource hierarchy.

3.4 Making a Scheduler I/O-Aware
We use our I/O subsystem and the integrated I/O con-

tention model to extend popular batch job scheduling algo-
rithms. We consider two existing scheduling policies: First-
Come First-Served (FCFS) and EASY backfilling [22]. We
select these policies because they represent algorithms with
increasing complexity and expected e�ciency in real re-
source managers [7]. The base scheduling schemes of the
FCFS and EASY backfilling algorithms are currently with-
out I/O awareness.

As part of the FCFS algorithm, jobs are scheduled in the
order they are submitted. Thus, the algorithm may su↵er

from head-of-line blocking, where a large job can delay every
other job in the queue from running. The EASY backfill
algorithm is similar to FCFS except that if a job at the front
of the queue cannot be scheduled, lower priority jobs are
scheduled on resources reserved for the highest priority job
- as long as doing so does not delay the projected start time
of the highest priority job. We assume that jobs are ordered
in the queue based on their submission time. Under this
assumption, both FCFS and EASY backfilling will not delay
high bandwidth jobs infinitely (i.e., starve). The problem
of job starvation associated to di↵erent job sorting (e.g.,
priority-based) is addressed elsewhere [17].

Defining a scheduler as I/O-aware means that the I/O
is used as an additional constraint when determining if a
job can be scheduled. The I/O subsystem described in Sec-
tion 3.3 allows us to add I/O awareness to the two sched-
ulers. This additional I/O constraint means that if schedul-
ing a job over-allocates any of the I/O resources available,
the job should not be scheduled even though compute re-
sources are idle. Our I/O-aware schedulers keep track of
over-allocations by updating the state of the I/O model
based on each job’s I/O BW requirements and make schedul-
ing decisions accordingly. Scenarios like the one in Figure 3
should never occur on a system that relies on our I/O aware
scheduler.

To add I/O awareness to either of the two scheduling al-
gorithms (i.e., FCFS and EASY backfilling), we extend the
scheduler to consider both available compute nodes and the
I/O BW available to the nodes themselves. Consequently,
our I/O-aware scheduler assigns a job to a node only when
the available BW at each level in the I/O switch hierarchy,
from the PFS to the node itself, meets the BW requirements.
For example, let’s assume we have an empty system similar
to the one modeled in Figure 2 and two jobs to be scheduled
(i.e., Job 1 and Job 2 with Job 1 at the head of the queue).
Job 1 only requires a single node and 64 MB/s of BW, and
Job 2 requires three nodes, with each node requiring 128
MB/s of BW. The scheduler starts with Job 1 and attempts
to schedule the job on Node 1. The scheduler also checks
the feasibility of the job by ensuring that the node is free
and that 64 MB/s of BW are available at Node 1 and Node
1’s ancestors (i.e., Lowest Level Switch 1, Network Switch
2, and the PFS). Since there is enough bandwidth, Job 1
is scheduled on Node 1 and the BW is allocated at Node
1 and at all of the ancestors. The scheduler then attempts
to schedule Job 2. The same process applied to Node 1 is
repeated for Nodes 2 and 3, but this time, the scheduler
must ensure that 128 MB/s are available. If both feasibil-
ity checks succeed, Nodes 2 and 3 are reserved for Job 2.
Finally, the scheduler attempts to reserve Node 4 for Job
2. Node 4 is available, but there is not enough available
BW at Lowest Level Switch 2 or Network Switch 2. Thus,
the scheduler does not reserve Node 4 for Job 2. Because
the scheduler now has no nodes left to consider in order to
satisfy Job 2’s requirements, it deems Job 2 unschedulable
with the current state of the entire system and releases the
reservations on Nodes 2 and 3. Figure 3 demonstrates the
overallocation thats occur if Job 2 is scheduled. This does
not mean that Job 2 cannot run; once Job 1 finishes, the
scheduler is be able to schedule Job 2. If a job’s require-
ment are not satisfiable even on an empty system, the job
is deemed unsatisfiable and an error is returned to the user
when they submit the job.



4. EVALUATION METHODOLOGY
This section describes our evaluation methodology includ-

ing the modeling of an expected large next-generation sys-
tem and of job workloads, as well as our metrics.

4.1 A Large Next-Gen. System Model
We test our approach against the model of a large, re-

alistic system. We construct such a model by analyzing
the request for proposal (RFP) for next-generation systems.
Specifically, we build the node and I/O components of our
modeled system after a large system that will be built as
part of the Commodity Technology System 1 procurement
(CTS-1) [20]. The CTS-1 cluster model consists of 3,888
compute nodes (24 SUs); 216 GB/s per edge IB switch (i.e.,
4x EDR 36-port switch); and a 70 GB/s parallel file system
(PFS) with perfect provisioning 2 as well as 432 GB/s core
switch pool (i.e., the bandwidth available in routing I/O re-
quests to the LNET routers). We assume that no significant
I/O contention occurs when applications write to the burst-
bu↵er (BB), which requires that the BB is either located at
the compute node or close enough such that the probability
of contention is minimal, as discussed in Section 3.3.

We define the bandwidths for the edge switch and core
switch pool based on the requirements in the draft RFP
and the latest IB technologies [20]. The bandwidth of the
PFS is determined based on the checkpointing patterns cap-
tured in the CORAL RFP [1], as CTS-1 does not capture
these requirements in the presence of the burst bu↵ers. We
assume that applications need to be able to write a check-
point every hour with a per-node checkpoint size of 1/2 of
the available node memory. We use the same frequency and
size for the checkpointing on CTS-1 whose nodes are each as-
sumed to have 128GB of memory. With this setting, a CTS-
1 node will need to checkpoint at least 64GB/hour with an
average I/O bandwidth of ⇠18MB/s per compute node and
⇠70GB/s for the entire system (i.e., 18MB/s⇥ 3,888 nodes).
We model the BW of the PFS either as perfectly provisioned
(i.e., perfectly matching the applications’ requirements) or
as underprovisioned (i.e., less than the applications’ require-
ments), as further described in Section 5.1.

4.2 Workload Model
As CTS-1 does not exist yet, we extrapolate the job traces

from two other clusters at LLNL: the 1,200 compute-node
Cab and the 2,740 compute-node Zin. We feed the same
traces to both the I/O-aware and I/O-ignorant versions of
our tests. We statistically generate the profiles of job work-
loads in terms of job submission times/rate, job request size
per node, requested time limit and elapsed times by using
real traces from LLNL’s current resource and job manage-
ment system: Slurm (cluster resource manager) and Moab
(scheduler).

At LLNL, jobs are submitted to Moab which stores the
submission times and queues the jobs up until they are ready
to launch. When a set of jobs are ready to be executed,
Moab sends these jobs to Slurm which then launches them
on its cluster. Since Slurm only receives jobs when they are
ready to launch, only Moab has the correct submit time in
its database. Slurm records the start and end times of the
jobs but does not return these times back to Moab. The
2We expect that the initial PFS BW provisioning of such a
system will be much larger because not all needed system
software including smart staging will have matured [21].

net e↵ect is that an individual database does not contain all
of the needed information, and thus we relate the two data
sets. Because these data sets do not have common unique
identifiers, we relate them by generating statistical patterns
from the two sets of data and then merge these statistics to
get a holistic view of the data.

From these statistics, we derive representative job work-
loads for our tests. Specifically, we model the arrival rates
of jobs as random events by using a Poisson distribution.
There are two assumptions underlying the use of the Pois-
son distribution: the event occurrences are all independent
and the events occur at a constant, average rate. Previous
work by Dinh et al. [8] shows, however, that it is inaccurate
to model job submission times directly as they are not in-
dependent events: a single user normally submits multiple
jobs at the same time. Instead, we use a method proposed by
Dinh et al.: modeling “user arrivals.” In the existing traces,
we find all the instances where a user submitted many jobs
in quick succession (i.e., less than 10 seconds between each
job) and bundle those job submissions up into one “user ar-
rival.” We also build a distribution that models the number
of jobs that a user is expected to submit when they arrive.
This binning into “user arrivals”makes our I/O profiles sat-
isfy the independence assumption of Poisson distributions.
However, this approach can still violate the constant, aver-
age rate assumption. It is well-known that user arrival is
more common during the day on a weekday than at night
on a weekend. To satisfy the constant, average rate require-
ment, we extend the previous work done by Dinh et al. as
follows. We break the job data into four ranges: weekday
day from 6:00am to 6:59pm; weekday night from 7:00pm to
5:59am; weekend day from 6:00am to 6:59pm; and weekend
night from 7:00pm to 5:59am. These four ranges represent
periods of time where the user arrivals are mostly constant.
By chunking our data into these four ranges, we now satisfy
the constant, average rate requirement of Poisson distribu-
tions as well. We record the lambda value for user arrival
in each time range and build a Poisson distribution for each
range.

We model the job request size in terms of the number of
nodes requested by each job. These values are recorded by
both Moab and Slurm, so either data set is su�cient. The
analysis of the distribution of node request sizes shows a
rapidly decreasing function that is heavily biased towards
smaller sizes requests. We also notice that request sizes are
biased towards powers-of-two values. To model the popula-
tion distribution of node request sizes both accurately and
automatically, we use a sampling distribution. We bin the
data where the size of each bin is a monotonically increas-
ing power of two and then record the number of jobs in each
bin — much like a histogram. We then build a sampling
distribution from these values.

We model the time limit and elapsed time in terms of the
wall-time requested for a job and the job’s actual execution
time. These values are taken from the Slurm data set since
it contains the execution time information. There is a cor-
relation between the amount of time requested by the user
and how long the job ran (i.e., elapsed time). Thus, instead
of modeling the values separately, we model them together.
We again build a sampling distribution of these values by
collecting all of the unique tuples of the form (time limit,
elapsed time) and counting the frequency at which they oc-



cur. From these frequencies, we calculate the probability
density function for time limit and elapsed time.

Finally, we build our I/O workloads by sampling values
from the aforementioned distributions. Jobs (i.e., the small-
est unit of input for our tests) consist of the following in-
formation: (1) a monotonically increasing identifier starting
from one; (2) the number of nodes requested by the user gen-
erating the job; (3) the number of cores requested by the user
generating the job; (4) the time limit (i.e., how much time is
requested by the user) sampled from the sampling distribu-
tion that is generated using the Slurm data; (5) submit time
(i.e., when is the job submitted) sampled from the appropri-
ate Poisson distribution (i.e., from weekday day, weekday
night, weekend day, or weekend night traces); (6) elapsed
time sampled simultaneously with time limit from the sam-
pling distribution that is generated using the Slurm data;
and (7) an average I/O Rate of 18MB/s per node in the job.
We use 18MB/s as the average I/O rate per node under the
assumption that all jobs will follow the checkpointing pat-
tern outlined in Subsection 4.1. This means that the total
I/O rate of a job is correlated with the number of nodes in
the job. For future work, we are investigating the e↵ects of
a more diverse mix of job I/O rates.

4.3 Emulation Environment
To test our approach without having to launch real jobs,

we developed a scheduling emulator within Flux. Figure 4.a
depicts Flux in real use. Users submit jobs to the scheduler
which launches them based on a defined scheduling policy.
Our emulation mode entirely removes any user interaction
and replaces it with an auto-submission module as shown
in Figure 4.b. Moreover, the emulator does not rely on the
direct execution of jobs but on the simulation of their ex-
ecution. It can use the Slurm database of submitted jobs
to generate the profile of simulated job executions. As real
time is too slow for the testing, the emulator triggers events
synthetically by extending Flux as shown in Figure 4.b. By
using the emulator, we can rapidly study critical questions
associated with the scheduler.

For the schedulers themselves, we take an incremental ap-
proach in implementing them into the Flux emulator for
a fair comparison. We start with the simple FCFS sched-
uler and extend it to support EASY backfill scheduling. We
adapt these schedulers to become I/O-aware by adding I/O
as an additional constraint when determining if a job can
be scheduled and executed. To this end, our adapted sched-
uler allocates and deallocates I/O bandwidth within the I/O
hierarchy to work correctly within the I/O-aware emulator.
When adding I/O to schedulers that use a priority function,
we include the I/O requirements of a job in the scheduler’s
priority function.

4.4 Contention Model
To quantify the e↵ect of I/O contention, we model the

contention and calculate the slowdown that applications ex-
perience when running on an over-allocated PFS.

We first model the contention that occurs at every re-
source within the I/O hierarchy (i.e., nodes, switches, and
PFS). For each resource, we consider the amount of I/O
BW that is being requested by its children in the hier-
archy. The child requests (ReqBW ) are sorted based on
their BW size from least to greatest (i.e., given n children,
ReqBW

i

 ReqBW
i+1, for each 0  i < n � 1). We calcu-
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Figure 4: Flux in real vs. emulation mode.

late the actual bandwidth that each child receives as:

ActualBW
i

= min(ReqBW
i

, AvgRemainingBW
i

)

where AvgRemainingBW
i

is a function of the parent’s peak
BW (PeakBW ) and is defined as:

AvgRemainingBW
i

:=
PeakBW �

P
i�1
j=0 ActualBW

i

n� i

Two cases can be observed. First, the sum of the requests
BWs is smaller than the available. Thus, all children get
their requested BW and any extra BW remains at the par-
ent. Second, the sum of the requests BWs is greater than the
available. Thus, the smaller requests are completely satis-
fied but for larger requests the remaining BW is distributed
equally. Contention only occurs in the second case. In our
contention model, we assume that the number of children
and the degree of overallocation has no e↵ect on the aggre-
gate bandwidth. In reality, the aggregate bandwidth of a re-
source decreases w.r.t. the number of children and degree of
overallocation due to increased cache thrashing, extra seeks
at the PFS, and additional dropped packets. Our assump-
tion is still valid for our tests because it minimizes the e↵ects
of contention, which is expected to occur only under I/O-
ignorant scheduling. Thus, we do not introduce any positive
bias towards our I/O-aware scheduling.

Each job comes with a required BW (JobActualBW ) but
receives an actual BW (JobActualBW ). The actual job BW
is the minimum of the actual BW of the resource the job is
running on. We use the interference factor (I) as defined
in [9] to determine the time an application spends perform-
ing computation or blocking on I/O, where the interference
factor is defined as:

I =

(
1, if JobActualBW = JobReqBW
JobActualBW

JobReqBW

, otherwise



When a job’s actual BW equals its requested BW, I is
equal to one; otherwise, the job experiences contention and
I ranges between zero and one. As the jobs running on
the system change, the interference factor for each job also
changes; we discretize time into intervals (�

i

), during which
each job’s interference factor (I

i

) can be considered constant.
The time an application spends performing computation is
defined by:

T (computing) =
X

i

(I
i

⇥�
i

) (1)

and the time an application spends blocking on I/O is de-
fined by:

T (I/O) =
X

i

(�
i

� (I
i

⇥�
i

))

= (
X

i

�
i

)� T (computing)

Under our model, jobs under I/O contention (I < 1) per-
form less computations than jobs not su↵ering from con-
tention (I = 1) in the same period of time. For our tests
in Section 5.1, we observe that the percentage of time that
the interference factor is less than one ranges between 55%
and 65% for underprovisioned PFSes with an I/O-ignorant
scheduler; the percentage of time is 0% in the other cases.

5. RESULTS
In this section we provide empirical evidence that I/O-

aware scheduling can increase the PFS e�ciency and reduce
job performance variability due to I/O contention.

5.1 Critical Questions and Test Settings
We address four critical questions: (1) Does I/O-aware

scheduling impact the percentage of time that nodes spend
in computation? (2) Does I/O-aware scheduling impact the
variability of each individual job’s performance? (3) Does
I/O-aware scheduling a↵ect the time to make a scheduling
decision? and (4) What is the trade-o↵ between system ef-
ficiency and turnaround time when comparing I/O-ignorant
with I/O-aware schedulers? To answer these questions, we
run tests with an EASY Backfilling scheduler on CTS-1 us-
ing four levels of PFS underprovisioning: no underprovision-
ing or 0% (70GB/s), an underprovisioning of 10% (63GB/s),
an underprovisioning of 20% (56GB/s), and an underprovi-
sioning of 30% (49GB/s). The sets of tests with the FCFS
schedulers displayed similar trends as the EASY backfill-
ing scheduler and thus are not shown in this section. Each
test consists of 2500 jobs built from the workload model de-
scribed in Section 4.2 and executed with the Flux emulator
using the model of CTS-1 described in Section 4.1. For our
tests, we assume that there are no external sources of I/O
outside the control of the scheduler (e.g., interactive users).
However if the system does have external sources of I/O, our
scheduler can still work by reserving a fraction of the par-
allel filesystem (PFS) bandwidth (BW) for these external
sources of I/O. Our results can support system administra-
tors in deciding how much BW to reserve for these external
sources. For example, a system with a perfectly provisioned
PFS that reserves 30% of the PFS BW for extraneous I/O
will produce the same results as a system with a PFS that
has been underprovisioned by 30% and does not have extra-

neous sources of I/O, which is one of the scenarios that we
show in our results.

5.2 Impact on Total Performance
To assess whether I/O-aware scheduling impacts the per-

centage of time that nodes spend in computation, we mea-
sure the total time that allocated nodes spend performing
computation versus blocking on I/O. Figure 5.a refers to the
set of tests in which the I/O-ignorant scheduler is used; Fig-
ure 5.b refers to the tests where the I/O-aware scheduler is
used. For each level of underprovisioning, the figures report
the percentage of time that nodes spend in computing (i.e.,
the blue bar) and in blocking on I/O (i.e., the red bar). As
shown in Figure 5.a, under I/O-ignorant scheduling, nodes
spend 100% of the jobs’ time in computation only if the
PFS is perfectly provisioned. However, as the PFS band-
width decreases due to underprovisioning, the percentage of
time allocated to computation also decreases. This is due to
the fact that the reduced PFS bandwidth increases the prob-
ability that I/O contention occurs. For example, when the
PFS is underprovisioned by 30%, only 79.1% of the nodes
are executing jobs’ computations; the rest are blocking on
I/O. On the other hand, Figure 5.b shows that regardless of
the PFS underprovisioning, I/O-aware scheduling keeps the
nodes in computation 100% of the time. This is because jobs
are scheduled only when su�cient resources (both CPU and
I/O) are available. These results support the need for I/O-
aware scheduling in order to prevent I/O contention when
data-intensive jobs are simultaneously run on an underpro-
visioned PFS.

5.3 Impact on Individual Job Performance
To assess the impact of the I/O-aware scheduling on each

individual job’s runtime, we measure the performance vari-
ability of jobs launched on the model of CTS-1 under I/O-
ignorant and I/O-aware EASY backfilling scheduling. Per-
formance variability is measured as the percentage of time
spent by each individual job doing computations versus
blocking on I/O. In Figure 6, we present the variability
of the 2500 jobs run under the four di↵erent levels of PFS
underprovisioning (i.e., 0%, 10%, 20%, and 30%). Under
I/O-ignorant scheduling in Figure 6.a, we observed that only
when the PFS is perfectly provisioned do the jobs not ex-
hibit any variability in performance . As the degree of PFS
underprovisioning increases, the variability of job perfor-
mance also increases. For example, when the PFS is un-
derprovisioned by 30%, the amount of time that individ-
ual jobs spend in computation ranges from 66.7% to 100%.
On the other hand, in Figure 6.b we do not observe any
performance variability under I/O-aware scheduling. The
conclusions are twofold. First, we observe that under an
I/O-ignorant scheduling, there is no guarantee on job perfor-
mance and each job’s performance varies wildly. In contrast,
under an I/O-aware scheduling, every job is guaranteed to
receive the required I/O, thus resulting in no variability.
Second, as the PFS is being increasingly underprovisioned,
individual jobs’ performance variability grows larger under
I/O-ignorant scheduling but remains zero under I/O-aware
scheduling. This consistency under I/O-aware scheduling
means that users fully receive the requested resources and
thus their jobs are not unexpectedly slowed down by other
jobs on the system. In other words, I/O-aware scheduling
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Figure 5: Percentage of total time spent by the entire CTS-1 cluster in computation and blocking on I/O.

resolves the variability in job performance due to I/O con-
tention.

5.4 Impact on Scheduling Decision Time
The benefits of I/O-aware scheduling do not come without

a cost. The additional checking that the I/O-aware sched-
uler performs when deciding which jobs to place on the sys-
tem increases the time to make a scheduling decision versus
an I/O-ignorant scheduler. The scheduling decision time is
the number of seconds between when a job state change oc-
curs and when the scheduler makes a decision based on that
state change. Intuitively, a more computationally-expensive
scheduling algorithm, such as our I/O-aware scheduling, can
cause a longer scheduling decision time. The decision time
of a scheduler becomes a major concern when it is longer
than the time between state changes. In the job workloads
described in Section 4.2 and used for our tests, the average
time between state changes is 31.7 seconds.

Figures 7.a and 7.b summarize the observed additional
cost in terms of the scheduler’s decision time (in seconds) for
EASY backfilling running on the emulated model of CTS-1
under the four di↵erent underprovisioning levels with I/O-
ignorant and I/O-aware schedulers respectively. The num-
ber of sampled times in each scenario is on average 9,580
(roughly four times the number of jobs). This is expected
since there are four state transitions that each job goes
through, and each state transition causes the scheduler to
run. Jobs that transition states together cause only one sin-
gle invocation of the scheduler and are counted as a single
sample time.

In Figures 7.a and 7.b, we represent the sampled times
with box plots. Traditionally a box plot consists of six dif-
ferent pieces of information. The whiskers on the bottom
extend from the 5th percentile to the top 95th percentile.
The top, bottom, and line through the middle of the box
correspond to the 75th percentile (top), 25th percentile (bot-
tom), and 50th percentile (middle). A square indicates the
arithmetic mean. Due to the distribution of the times in our
tests, only the 75th and 95th percentiles are visible. With
I/O-ignorant scheduling, 75% of the decision times are be-

low 0.07 seconds and the 95th percentile times are ⇠1.43
seconds. With I/O-aware scheduling, 75% of the decision
times are below 0.12 seconds and the 95th percentile times
range between 1.97 and 6.64 seconds.

The critical comparison of Figures 7.a and 7.b outlines the
following three trends. First, when we consider the lowest
75% of the decision times for I/O-ignorant and I/O-aware
scheduling, scheduler decision times di↵er by at most 0.04
seconds. Second, the variability of the decision times un-
der I/O-ignorant scheduling remains constant irrespective
of PFS BW underprovisioning. This is not the case for I/O-
aware scheduling, for which we observed that the variability
of the largest 25% decision times increases when the PFS is
underprovisioned. Third, for both schedulers, the 95th per-
centile decision time is still shorter than the average time
between state changes, which is on the order of 10s of sec-
onds.

Preliminary analysis of the longest 25% of decision times
under both schedulers suggests that these times occur af-
ter the completion of a job with either large compute or
I/O requirements followed by the scheduling of many smaller
jobs. The fact that I/O-aware scheduling with an underpro-
visioned PFS exhibits larger variability indicates that the
problem is exacerbated by the additional I/O constraints.
The additional variability can potentially be alleviated with
the introduction of new mechanisms such as caching, pre-
emptive scheduling, and hierarchical scheduling [13].

5.5 System Efficiency vs. Turnaround Time
Users running applications want a system that maxi-

mizes the total useful computation performed on the allo-
cated nodes (system e�ciency) and minimizes the time be-
tween when a job is submitted and when the job completes
(turnaround time). The turnaround time is the time the job
spends in the scheduler’s queue plus the time the job spends
in execution. To ensure that jobs obtain their required I/O
bandwidth, the I/O-aware scheduler may delay the execu-
tion of some jobs until more I/O resources become available.
In other words, jobs obtain the exactly required resources,
achieving 100% system e�ciency, in exchange for a poten-
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Figure 6: Variability of individual jobs’ time spent in computation.

(a) I/O-ignorant (b) I/O-aware

Figure 7: Scheduler decision time distributions.

tially longer time in the queue and consequently, a longer
turnaround time. To quantify this trade-o↵, we measure the
lower-bound ratio of I/O-aware system e�ciency over I/O-
ignorant system e�ciency as well as the upper-bound ratio
of I/O-aware turnaround time over I/O-ignorant turnaround
time for the same CTS-1 tests as in Figures 5-7 when using
EASY backfilling scheduling. For the system e�ciency ra-
tio, the higher, the better for I/O-aware scheduling; for the
turnaround time ratio, the lower, the better for I/O-aware
scheduling. The ratio of system e�ciencies is defined as a
lower-bound since we expect this ratio to be higher in real
systems. This is because the contention model that we use
for our tests is quite conservative and underpenalizes I/O
contention, which only occurs in I/O-ignorant simulations,
as we discussed in Section 4.4. A greater penalty on con-
tention can further reduce the overall system e�ciency un-
der I/O-ignorant scheduling and consequently increase the

system e�ciency ratio. On the other hand, the turnaround
time ratio is an upper-bound since we expect this ratio to be
lower in real systems. This is because in real workloads we
can observe a greater diversity in job I/O requirements; this
diversity allows the I/O-aware scheduler to fill idle nodes
with jobs that have a low I/O requirement, decreasing the
turnaround time of jobs under I/O-aware scheduling, and
consequently decreasing the ratio.

In Figure 8, we observe how in a perfectly provisioned
PFS, I/O-ignorant and I/O-aware scheduling have the same
system e�ciency and turnaround time (i.e., the ratios are
equal to one). As the level of PFS underprovisioning in-
creases, the ratios increase. For example, in our tests we
observed that at 30% underprovisioning, I/O-aware schedul-
ing has, on average, a 1.29 times greater lower-bound sys-
tem e�ciency ratio and a 1.52 times greater upper-bound
turnaround time ratio. This means that for real-world



workloads, the system under I/O-aware scheduling can per-
form at least 29% more science (lower bound) as the nodes
are fully utilized for computation but, at the same time,
the turnaround time can be up to 52% longer (upper
bound). These observations support our claim that I/O-
aware scheduling boosts the amount of science performed
by scientific workloads despite a longer turnaround time.

Figure 8: System e�ciency versus job turnaround time.

6. RELATED WORK
I/O-aware scheduling is still in its infancy. First e↵orts

have extended existing scheduling policies by using heuris-
tics in application-specific domains. For example, the ex-
tended FCFS scheduling in [11] integrates heuristics to
deal with irregular I/O-intensive jobs. The heuristics search
for I/O parameter values among the parameter ranges us-
ing testing. The work builds upon and extends previous
work [6]. In this paper, we move away from individual
heuristics and applications.

More recent e↵orts on runtime scheduling of I/O con-
tention include [35, 10, 9, 36]. Specifically, work in [35]
addresses I/O contention with a PFS access controller: the
controller provides a single application exclusive access to
the PFS for a time window. Work in [9] analyzes the I/O
contention between two applications and investigates the
use of runtime application coordination in order to avoid
congestion. Work in [10] analyzes the impact of congestion
on applications’ I/O bandwidth and assesses a variety of
runtime techniques designed to either maximize system ef-
ficiency or minimize application slowdown. Finally, work
in [36] presents an I/O-aware scheduling framework that
coordinates I/O requests at runtime on petascale comput-
ing systems driven by either user-oriented metrics or system
performance. Our work aligns with and complements these
four runtime methods by targeting next-generation large-
scale systems and defining a method that operates at batch
schedule time to mitigate I/O contention.

IBM defines network-aware scheduling within their pro-
duction resource manager and scheduler [15]. Our I/O-
aware scheduling can directly apply to network-aware
scheduling by extending our I/O subsystem resource model
to include the full switch hierarchy and making schedulers

consider the network bandwidth requirement of a parallel or
distributed application.

When looking at resource allocations in a broader spec-
trum of systems, including grid and batch systems, many
do not target I/O bandwidth as constraints, although they
have begun to consider increasingly diverse resource types
beyond compute nodes and cores. For example, work in [16]
deals with multiple resource scheduling (MRS) algorithms
aiming for the minimal execution schedule through e�cient
management of available grid resources (i.e., memory, disk
and CPUs of a wide area distributed computing platform).

Finally, dynamic scheduling work such as [29, 30] can
complete our approach by enabling the extension of our so-
lutions to more traditional systems without burst bu↵ers.
Dynamic scheduling extends a batch system with dynamic
allocation facilities to support on-the-fly resource allocation
to elastic jobs; although dynamic scheduling does not cur-
rently target any non-traditional constraints, including I/O
bandwidth.

7. CONCLUSIONS
The economics of flash vs. disk storage is increasingly

motivating large HPC centers to underprovision parallel file
system bandwidth. With such underprovisioned parallel file
systems (PFSes), avoiding an I/O storm at the PFS level is
critical to achieving computational e�ciency and to avoiding
any disruption of the entire HPC center.

In this paper we present a novel solution that allows us
to meet these challenges at the batch job scheduler layer.
Our technique reduces I/O contention by incorporating I/O-
awareness directly into scheduling policies such as FCFS and
EASY backfilling. We model the links between all levels in
the storage hierarchy and use this model at schedule time to
avoid I/O contention.

We explore the e↵ectiveness and scalability of our method
using schedulers and an emulator built on top of the Flux
resource and job management framework. We show that
I/O-aware scheduling eliminates all I/O contention on the
system, regardless of the level of underprovisioning. In addi-
tion, it ensures that all jobs receive the I/O bandwidth they
require. Furthermore, we observed that our solution reduces
job performance variability by up to 33% and increases sys-
tem utilization by up to 21%.

Our results suggest that I/O-aware scheduling can scale to
handle the next-generation of HPC systems and ultimately
improve the amount of science performed on these systems.
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