
PRIONN: Predicting Runtime and IO using Neural Networks
Michael R. Wyatt II
University of Delaware
Newark, Delaware
mwyatt@udel.edu

Stephen Herbein
University of Delaware
Newark, Delaware
sherbein@udel.edu

Todd Gamblin
Lawrence Livermore National

Laboratory
Livermore, California
gamblin2@llnl.gov

Adam Moody
Lawrence Livermore National

Laboratory
Livermore, California
moody20@llnl.gov

Dong H. Ahn
Lawrence Livermore National

Laboratory
Livermore, California

ahn1@llnl.gov

Michela Taufer
University of Delaware
Newark, Delaware
taufer@udel.edu

ABSTRACT
For job allocation decision, current batch schedulers have access
to and use only information on the number of nodes and runtime
because it is readily available at submission time from user job
scripts. User-provided runtimes are typically inaccurate because
users overestimate or lack understanding of job resource require-
ments. Beyond the number of nodes and runtime, other system
resources, including IO and network, are not available but play a
key role in system performance. There is the need for automatic,
general, and scalable tools that provide accurate resource usage
information to schedulers so that, by becoming resource-aware,
they can better manage system resources.

We tackle this need by presenting a tool for Predicting Runtime
and IO using Neural Networks (PRIONN). PRIONN automates pre-
diction of per-job runtime and IO resource usage, enabling IO-aware
scheduling on HPC systems. The novelty of our tool is the input of
whole job scripts into deep learning models that allows complete au-
tomation of runtime and IO resource predictions. We demonstrate
the power of PRIONN with runtime and IO resource predictions
applied to IO-aware scheduling for real HPC data. Specifically, we
achieve over 75% mean and 98% median accuracy for runtime and
IO predictions across 300,000 jobs from a real HPC machine. We
combine our per-job runtime and IO predictions with queue and
system simulations to predict future system IO usage accurately.
We predict over 50% of IO bursts in advance on a real HPC system.

KEYWORDS
Convolutional Neural Network, IO-Aware Scheduler, IO Prediction

ACM Reference Format:
Michael R. Wyatt II, Stephen Herbein, Todd Gamblin, Adam Moody, Dong
H. Ahn, and Michela Taufer. 2018. PRIONN: Predicting Runtime and IO
using Neural Networks. In Proceedings of 47th International Conference
on Parallel Processing (ICPP 2018). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3225058.3225091

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225091

1 INTRODUCTION
This paper tackles the problem of current batch schedulers on HPC
systems being unaware of resources, such as IO and network band-
width, when allocating resources to jobs. When submitting HPC
jobs, users submit job scripts to a batch system with requests for
compute resources (i.e., number of nodes and cores) for a period of
time. Consequently, current batch schedulers have access to and
use only information on the number of nodes and time for their
job allocation decision, omitting the fact that jobs still contend for
other resources. For example, co-scheduling many IO-intensive jobs
can cause IO contention and underutilization of other resources,
ultimately degrading performance (i.e., execution slowdown) as the
jobs compete for access to the parallel filesystem. In general, in-
cluding resource-awareness in schedulers, by considering a broader
range of resources, such as IO and network bandwidth, can solve
contention and underutilization problems: jobs can be scheduled
so that resource usage is known and balanced [5, 10].

Clearly, current resource usage requests (i.e., number of nodes
and time) are insufficient to achieve resource-aware scheduling.
Delegating the specification of resource usage to users is not a
feasible solution either. Analysis of job traces in HPC centers shows
how user-requested runtimes are often overestimated. For example,
user-requested runtimes for nearly 300,000 jobs on the Cab cluster
at Lawrence Livermore National Laboratory in 2016 had a mean er-
ror of 172 minutes (24% relative accuracy). Current batch scheduler
policies that terminate jobs when they exceed the user-requested
time are often the cause for runtime overestimation. Furthermore,
when extending the type of resources considered in scheduling
decisions to include IO and other resources, users in scientific com-
puting do not have an accurate understanding of jobs’ requirements
for a given HPC system, and cannot be expected to learn how to
accurately estimate the associated resource usage. If schedulers had
access to accurate estimates of jobs’ resource usage, they would
better deal with system resource contention and increase scientific
throughput. This need can be addressed by predictive methods
that can accurately obtain the per-job resource usage information
necessary for resource-aware scheduling. In this paper, we present
PRIONN (Predicting Runtime and IO using Neural Networks), a
tool to accurately predict per-job runtime and IO bandwidth. We
use the predictions to enable IO-awareness in a real HPC scheduler
when it allocates resources to jobs.

https://doi.org/10.1145/3225058.3225091
https://doi.org/10.1145/3225058.3225091

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Wyatt et al.

The need for accurate resource usage estimates was addressed
in previous efforts with traditional machine learning models (e.g.,
Decision Tree and k-Nearest Neighbors) that were mainly used
to predict runtime [3, 7, 19–21] and, in some cases, more general
resource usage [11, 12, 16]. This previous work has shown that ma-
chine learning models can provide more accurate runtime estimates
than users [20]. However, previous work also required development
and maintenance of parsers to extract features from diverse sets
of jobs scripts for input into machine learning models. Therefore,
when relying on simple parsers, the previous efforts have failed to
generalize (i.e., different types of scripts require different parsers).
Moreover, any effort to write general parsers incurs the cost of trun-
cating and removing unique information present only in subsets of
job scripts. In other words, not all information from job scripts can
be captured by a parser.

Contrary to the traditional ML techniques listed above, deep
learning models can automatically detect important patterns in
data without truncating and removing text specific to a given
script. Therefore, deep learning models remove the need for any
manual parsing and feature extraction. This capability has been
demonstrated thoroughly in the past decade with the application
of Convolutional Neural Networks (CNNs) where traditional mod-
els have failed, such as in image recognition and text classifica-
tion [6, 8, 9, 17, 18]. The challenge of using deep learning models,
such as CNNs, when dealing with predicting resource usage from
job scripts is how to transform non-image data (i.e., the job scripts)
into image-like data suitable for CNNs. We tackle and solve this
challenge with PRIONN, our automatic, general, and scalable tool
for Predicting Runtime and IO using Neural Networks. PRIONN
relies on a novel, direct, and quick data mapping method for job
scripts that allows us to exploit the power of deep learning models
to provide accurate per-job runtime and IO resource (i.e., per-job
IO bandwidth usage) predictions. PRIONN is unique in that it con-
currently transforms entire job scripts into image-like data, and by
doing so it removes the need for script-specific parsing and feature
extraction. We feed the image-like representation of job scripts
into a 2D CNN, and by doing so we unleash the power of deep
learning models to accurately estimate job resources from whole
job scripts. The PRIONN automatic workflow (i.e., mapping and
feeding into CNN), when integrated into HPC schedulers, provides
us with a general and scalable solution for runtime and IO resource
predictions.

Figure 1 shows the integration of PRIONN into a real HPC sched-
uler. The integration has two main phases: (1) the per-job runtime
and IO resource predictions with PRIONN and (2) the use of the
predictions in IO-aware scheduling on real HPC systems. In the
first phase, PRIONN reads job scripts from recently completed jobs
and concurrently maps the text of each job script into an image-like
data representation. Then, PRIONN trains a deep learning model
(i.e., a 2D CNN) by feeding these representations into the model.
PRIONN uses the trained CNN model to predict per-job runtime
and IO resource of newly submitted jobs in the system queue. In
the second phase, we apply the per-job runtime and IO resource
predictions from PRIONN to a scenario with an IO-aware scheduler
and data from a real HPC system. We use a system simulator with
the per-job runtime and IO resource predictions to forecast future
system IO and IO bursts.

The contributions of this paper are as follows:
• The PRIONN components used to leverage a neural network
to interpret whole job scripts and predict per-job runtime
and IO resource in HPC systems;

• The evaluation of PRIONN’s ability to outperform traditional
machine learning techniques in accurately predicting per-job
runtime and IO resources; and

• The application of PRIONN’s predictions (i.e., per-job run-
time and IO resources) to capture system IO and IO bursts
for an IO-aware scheduler.

Our results show how PRIONN achieves over 75% mean and 100%
median accuracy for predictions of per-job runtime and IO resources
across nearly 300,000 jobs from a real HPC machine. We inject
PRIONN’s predictions into an IO-aware scheduler that manages
a real HPC system. Because of PRIONN, the system’s scheduler
becomes aware of system IO and predicts over 50% of IO bursts (i.e.,
times of IO contention) in advance.

The remainder of this paper is organized as follows: In Section 2
we describe the components and novelty of the PRIONN workflow
for predicting per-job runtime and IO resources, and in Section 3 we
evaluate PRIONN using real HPC data to predict per-job runtime
and IO resources. Section 4 describes how we use per-job runtime
and IO resource predictions to achieve IO-aware scheduling with
data from a real HPC system. Section 5 presents related work, and
Section 6 summarizes our main results and future work.

2 PREDICTING RESOURCE USAGE
In this section, we describe PRIONN and how PRIONN components
(e.g., the data mapping technique and deep learning model) were
chosen. We also demonstrate how our tool creates accurate job
runtime and IO resource predictions without manually extracting
features from job scripts. Figure 2 shows the steps of predicting jobs’
resource usage with PRIONN (top) and, for the sake of comparison,
with traditional machine learning methods (bottom). The PRIONN
tool comprises three steps: (1) data processing, (2) machine learn-
ing model, and (3) training and prediction. PRIONN executes the
three steps on a single dedicated node of the Surface cluster at the
Lawrence Livermore National Laboratory. Each node on Surface
has 16 computational cores and two NVIDIA Tesla K40 GPUs. The
data processing is performed on a single core; the training and pre-
diction are performed on the node’s two K40 GPUs. These overall
steps are performed asynchronously to the scheduling of jobs on
the production cluster.

2.1 Job Script Data Processing
Data processing is needed to transform raw text from job scripts
into data that can be input into machine learning models. A novel
component of our tool is the mapping of job scripts to an image-
like data representation (i.e., one image-like representation per job
script). Each image-like representation of a job script is composed
of pixels which are mapped from text characters in the job script.
Because of our mapping, whole job scripts can be input into deep
learning models. Job scripts must be cropped and padded to a fixed
size because deep learning models require a constant size input.
We describe this process in Section 2.4. We consider two types of
mapping: we map each job script into either a 1D sequence or a

PRIONN: Predicting Runtime and IO using Neural Networks ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Figure 1: Overview of the PRIONN components and its application to next-generation HPC schedulers.

Figure 2: Overview of the PRIONN tool for obtaining jobs’ resource usage predictions from HPC job scripts.

2D matrix of pixels (i.e., numerical values). Each pixel is mapped
from a character in the job script. When mapping job scripts to a
1D sequence, the job script is flattened such that all lines of the text
are concatenated into a single line before mapping the characters
to pixels. Mapping to a 2D matrix, on the other hand, preserves the
structure of the job script text (i.e., the location of characters in the
job script are not altered).

The mapping of characters to pixels is performed on a separate
node from the batch scheduler to avoid interference with the criti-
cal path of the resource scheduler. The mapping can be performed
with four different transformations: binary, simple, one-hot, and
word2vec. The binary character transformation method is a lossy
transformation that converts each character to a binary value. All
space characters (i.e., space, tab) are assigned the value “0” and all
non-space characters are assigned the value “1”. The simple charac-
ter transformationmethod is a lossless transformation that converts
each unique character to a unique value. We convert a standard
ASCII character from the job script text file to a unique integer value.
The one-hot character transformation method is a widely used loss-
less transformation that converts each unique character to a unique
128 value vector. Each vector has exactly 1 scalar with value “1”
and the remaining are “0”. The word2vec transformation method is
a lossless transformation that converts each unique character to a
unique 8 value vector. We use Google’s word2vec method to obtain
this transformation [13]. This method examines the context of a

character (i.e., surrounding characters) to embed information about
that character in a multidimensional vector.

Independent from the method to map characters into pixels, our
data mapping gives PRIONN three advantages over manual feature
extraction found in previous resource prediction work [2, 3, 7, 12,
16, 19, 20]. First, PRIONN is automatic and can be deployed as-is
on any HPC system. Second, our tool is scalable for the increasing
number of HPC jobs and HPC systems in that it does not require
ongoing maintenance as job scripts and HPC environments change.
Third, our tool is general to any HPC system. Any type of job script
can be processed with our mapping to produce data which can be
used with a deep learning model.

Contrary to our approach, traditional machine learning models
for resource predictions such as Random Forest (RF), Decision Tree
(DT), or k-Nearest Neighbor (kNN) rely on manual feature extrac-
tion from job scripts: specific features (lines) in job scripts must be
identified, parsed, and transformed into data usable with machine
learning models [12, 16, 20]. Consequently, a priori knowledge of
the job scripts’ structure (e.g., number and type of lines) and which
features are indeed useful for resource usage prediction are neces-
sary for traditional machine learning models. Job script features
(e.g., user, requested time, and submission directory) are identified
and parsed from the job scripts using custom parsing scripts. Fea-
tures containing string data (e.g., user and application name) must
be further processed into numerical data using methods such as

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Wyatt et al.

Feature Name Feature Description
Requested Time User-requested runtime in hours
Requested Nodes User-requested number of computa-

tion nodes
Requested Tasks User-requested number of tasks
User User login ID
Group User login group
Account User account (i.e., bank)
Job Name User specified job name
Working Directory User specified directory for job exe-

cution
Submission Directory Directory fromwhich user submitted

job
Table 1: List of manually extracted features from job scripts
used with traditional machine learning models for com-
parison to our tool, PRIONN. These features are based on
those described in the paper from the Smith and co-authors
in [19, 20].

bag-of-words or label encoding. Features containing numerical data
may also require some sort of processing (e.g., date values must be
converted to epoch-seconds).

For the sake of a fair comparison, we manually extract features
from our dataset of job scripts and use the extracted information
with three traditional practice machine learning models (i.e., RF,
DT, and kNN), which have been used for resource predictions in
other work [12, 16, 20, 21]. To this end, we replicate the manual
feature extraction in [19, 20]. We create a custom parsing script for
our dataset of job scripts which captures features. This task proved
difficult due to inconsistencies in job script format, demonstrating
that this method is not ideal for deployment on real HPC systems.
The complete list of parsed features is in Table 1. We use a label
encoder to transform each parsed feature into a numerical value in
which we assign a unique integer to each unique string value.

2.2 Machine Learning Models
Selection of a machine learning model for PRIONN is driven by
the trade-off between prediction accuracy and prediction costs
(i.e., training time). These properties are orthogonal: if a prediction
method is highly accurate but slow to produce predictions, delays
will make the prediction useless for the batch scheduler. We de-
fine our tool to be as accurate as possible without impacting the
performance of the scheduler. We assess a diverse set of machine
learning models for our image-like data mapping and for the man-
ually extracted features. For our mapped data, we assess three deep
learning models into which we can ingest our image-like represen-
tation of the job scripts: fully connected Neural Network (NN), 1D
Convolutional Neural Network (1D-CNN), and 2D Convolutional
Neural Network (2D-CNN). For the manually extracted features, we
test three low cost, high-impact machine learning models: Random
Forest (RF), Decision Tree (DT), and k-Nearest Neighbors (kNN).

With the image-like representation of our job scripts, we train
deep learning models for predicting runtime and resource usage.
With deep learning, the many hidden layers of neurons are able

to automatically detect important features and patterns from sets
of characters in job scripts. Simpler machine learning algorithms,
such as kNN, DT, and RF, are not able to build features from sets of
characters and are not suited to analyze our mapped data. The NN
uses a 1D sequence of the mapped data as input and contains many
fully connected hidden layers. The 1D-CNN also uses a 1D sequence
of the mapped data job scripts as input and contains several 1D
convolutional layers followed by several fully connected hidden
layers. The 2D-CNN uses a 2Dmatrix of the mapped data job scripts
as input and contains several 2D convolutional layers followed by
several fully connected hidden layers. The deep learning models
are classifiers, and each node in the final output layer is associated
with a value or range of values predicted for resource usage (e.g.,
for runtime predictions, the output layer is 960 nodes in size where
each node is associated with a runtime in minutes between 0 and
960 minutes).

In general, the manually extracted features in Table1 are suitable
for the many traditional machine learning models from previous
resource prediction work (a detailed description of the related work
is provided in Section 5). From an implementation point of view, in
our work we use regression versions of kNN, DT, and RF available
from the scikit-learn Python library [15]. Each of these models
uses the manually extracted features as inputs, and the outputs are
predictions for runtime and resource usage of individual jobs.

2.3 Training and Evaluation
To substantiate the selection of the best deep learning model for
PRIONN and quantify the prediction accuracy to cost tradeoff, we
mimic a scheduling system in which jobs are submitted to a batch
scheduler’s queue with the same frequency found on a high-end
cluster. Specifically, in this work, we simulate the Cab cluster at
Lawrence Livermore National Laboratory. We perform training
and prediction at the time of job submissions. The submission,
start, and end times of real HPC jobs are used to replicate the
queuing and execution of jobs on the HPC cluster with its SLURM
batch scheduler. Historical jobs’ data (i.e., jobs that have already
executed) are used to train each machine learning model used in
this paper. The trained model is then used to predict the resource
usage of jobs as they are submitted to the batch scheduler. In our
emulation of the real scheduling system, prediction of job runtime
and IO resource occurs at the same time as the job submission to
the batch scheduler. After every 100 job submissions, models are
retrained with the newest historical job data (i.e., jobs that have
recently completed). We train each model on the 500 most recently
completed jobs. Our empirical evaluation of training with data from
50 up to 5,000 jobs indicated that there is minor improvement of
prediction accuracy and higher cost to train beyond 500 jobs for
PRIONN. The low training size is unusual for most deep learning
tasks, but PRIONN’s models are retrained rather than re-initialized
after each 100 submitted jobs. Learned parameters in the model pass
to subsequent models; thus knowledge is retained across several
training events. This characteristic of deep learning models is not
present in traditional machine learning models.

When evaluating prediction models, we first consider the accu-
racy of the predicted resource usage. Then, we consider the time

PRIONN: Predicting Runtime and IO using Neural Networks ICPP 2018, August 13–16, 2018, Eugene, OR, USA

needed to obtain the resource usage prediction. We compare pre-
dicted resource usage to the actual resource usage for each job with
relative accuracy. Relative accuracy is preferred over absolute error
because it mitigates the negative impact of small prediction error
for jobs with high resource usage. For example, a runtime prediction
error of 30 minutes is far worse for a one-hour job than for a twelve-
hour job. Equation 1 shows how we calculate relative accuracy for
each resource usage prediction, where true is the actual value and
pred is the predicted value. The ϵ value in the denominator (i.e.,
machine epsilon) prevents division by zero when both true and
pred are 0. We use the maximum value between true and pred in
the denominator of Equation 1 for two reasons: (1) to maintain a
range of [0, 1] for the metric and (2) to penalize underprediction
more than overprediction. We do this because underpredicted re-
source usage (e.g., we predict IO of 10 MB/s for a job that uses 25
MB/s) fed to an IO-aware scheduler results in resource contention.

relativeAccuracy = 1 −
|true − pred |

max(true,pred) + ϵ
(1)

We use a dataset of real HPC jobs to train and evaluate resource
usage predictions. The dataset contains information for 295,077
jobs from Lawrence Livermore National Laboratory. The jobs were
executed on the Cab supercomputer, which has 1,296 nodes and a
maximum runtime of 16 hours; it is connected to a Lustre parallel
file system. The dataset consists of job scripts, execution data, and
resource usage data for each job. From the nearly 300,000 jobs in
our dataset, 111,596 jobs are unique (i.e., the job script is unique).
The jobs were submitted by 492 users running a large range of
different scientific applications. The dataset exhibits a wide range
of resource usage for both runtime and IO of jobs. A total of 29,291
jobs were either canceled by the user or removed from the system
before executing. We exclude these jobs from our analysis, giving a
total of 265,786 jobs and 97,361 unique job scripts.

2.4 Optimal Prediction Parameters
We define an optimal set of components (i.e., data mapping method
and deep learning model) for our tool based on the tradeoff between
accuracy and performance described in Section 2.2. We also deter-
mine the best traditional machine learning model for comparison
to our tool. For each machine learning model used in this paper, we
use the techniques described in Section 2.3 to train and evaluate
runtime predictions. We use the data described in Section 2.3 for the
evaluation of our resource usage predictions. We predict runtime
down to one minute (i.e., real and predicted runtime are rounded
to the nearest minute)

We find the optimal settings for PRIONN with a comparison of
the four transformations of our data mapping method (i.e., binary,
simple, one-hot, and word2vec) and a comparison of the three
deep learning models (i.e., NN, 1D-CNN, and 2D-CNN) described
in Sections 2.1 and 2.2. As discussed in Section 2.1, deep learning
models require a constant size input. Motivated by the need to keep
the data processing and training time low, we fix the job scripts
to a standard size of 64 rows and 64 columns of characters before
mapping the data to our image-like representation. Job scripts with
less than 64 rows or columns of characters are extended to this
size with space characters. Jobs larger than 64 rows or columns of
characters are cropped to the correct size. Standardizing the size of

Figure 3: Time in seconds needed to transform 500 job
scripts to 500 pixel-like representations by the four dif-
ferent transformations (i.e., binary, simple, one-Hot, and
word2vect). The pixel-like representations are used for
training the deep learning models.

job scripts incurs a small amount of data loss at the very end of the
impacted scripts. Note that only 9.9% of jobs scripts contain more
than 64 lines of text and 13.8% of text lines contain more than 64
characters.

We evaluate the time and accuracy of prediction for each data
mapping method. Figure 3 shows the time necessary to process
500 job scripts (i.e., the number of jobs used each time we train
a machine learning model) for each data mapping type. The one-
hot transformation requires the most time, and the three other
transformations require less than three seconds for 500 jobs. Each
transformation maps characters to values that are either scalars or
vectors and the vectors can vary in size. As a result, the time to train
a deep learning model with data from each transformation method
is different. Figure 4 shows the time to train a 2D-CNN for 10 epochs
on 500 jobs using data from the four transformation methods. Our
results indicate that one-hot requires the most amount of time for
training, while the three other transformations take much less time.
Figure 5 shows the accuracy for each transformation method and a
2D-CNNmodel, where word2vec outperforms the other three trans-
formation types. The word2vec transformation provides the best
combination of processing and training time with high prediction
accuracy.

We evaluate the time and accuracy of prediction for each deep
learning model considered for PRIONN. Figure 6 shows the time to
train each of the deep learning models with the word2vec data map-
ping. The 2D-CNN is trained in less time than the NN andmore time
than the 1D-CNN. Figure 7 shows the runtime prediction accuracy

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Wyatt et al.

Figure 4: Time in seconds needed to train a 2D-CNN with
each type of transformed data from our data mapping
method.

Figure 5: Distributions of relative accuracy for runtime pre-
dictions with each type of transformed data and a 2D-CNN.

using the word2vec transformation and our three deep learning
models. The NN and 2D-CNN produce runtime predictions with
higher accuracy than the 1D-CNN. These results indicate that the

Figure 6: Time in seconds needed to train each of the tested
deep learning models using the word2vec data mapping
method.

Figure 7: Distributions of relative accuracy for runtime pre-
dictions with each type of deep learning model and the
word2vec data mapping.

word2vec transformation and 2D-CNN model give the best results
for our resource prediction workflow and are also fast enough to

PRIONN: Predicting Runtime and IO using Neural Networks ICPP 2018, August 13–16, 2018, Eugene, OR, USA

be used with online training. We can reason that word2vec pro-
vided the best accuracy because each character is encoded with
information about the context of that character. This information
likely decreases the epochs needed to converge on an accurate deep
learning model. Similarly, we can hypothesize that the 2D-CNN
performs best because the convolutions on the 2D matrix of charac-
ters provide an efficient method to build features around patterns
of jobs scripts’ code (i.e., patterns among subsequent lines of code).
Based on our analyses in this section, we use the word2vec trans-
formation and the 2D-CNN deep learning model for our PRIONN
tool. Specifically, PRIONN uses the word2vec algorithm with an
output vector size of four and a 2D-CNN with four convolutional
layers and four fully connected layers.

We predict the runtime of each job in our dataset with the manu-
ally extracted features in Table 1 and the three traditional machine
learning models (i.e., kNN, DT, and RF) representative of previous
resource usage predictions. We observe that each one of the three
machine learning models has similar prediction accuracy; the RF
slightly outperforms the other two with an average relative accu-
racy of 2% and 3% higher than DT and kNN respectively. We can
speculate that the increased complexity of the RF explains why it
performs better than the DT. Additionally, the method in which
categorical features are encoded to numerical values is a likely
explanation for the poor performance of the kNN, which relies on
measuring the Euclidean distance between jobs. The time required
to extract job script features and train each model is less than one
second for 500 jobs (i.e., the training data size for each batch of
predictions). Thus, we identify the RF to be the best performing
model among traditional methods. We further access RF’s accuracy
towards previous work in [20] by replicating the work in that pa-
per with our RF implementation and their datasets. Table 2 shows
the accuracy from [20] and our RF. We achieve similar or better
accuracy than reported in [20] for both datasets. Results in the
table confirm that (1) the RF is the best machine learning model
for extracted features and (2) the RF achieves similar or better run-
time prediction accuracy compared to previous runtime prediction
work. We use the RF as a representative of previous methods for
comparison to our PRIONN tool in the remainder of this paper.

3 EVALUATION OF RESOURCE PREDICTIONS
We evaluate the data mapping and deep learning model of PRIONN
with predictions for runtime and IO resources of real HPC jobs.
To this end, we compare our predictions to the best traditional
machine learning model predictions as well as user predictions
(when applicable). Our results show how PRIONN provides better
per-job prediction accuracy and thus is better suited for augmenting
schedulers with the information necessary for IO-aware scheduling.

3.1 Per-Job Runtime Predictions
Our dataset of 295,077 jobs comes from real traces whose jobs
were executed on the Cab cluster at Lawrence Livermore National
Laboratory during 2016. Figure 8a describes our dataset in terms
of the distribution of actual runtimes. Nearly half of the jobs have
a runtime between 0 and 60 minutes. The mean job runtime is
44 minutes, and a small percentage of jobs have runtimes over
three hours. Figure 8b shows the boxplots describing the relative

accuracy for predicted job runtimes when using: (1) user requested
time, (2) the best traditional machine learning model (i.e., RF), and
(3) PRIONN. We observe how our method has a mean accuracy
of 76.1%, an increase of 6.0% over RF. The median accuracy for
our predictions is 100%, indicating that for over half of the jobs in
our dataset, we correctly predict the runtime. High accuracy for
runtime prediction is important for accurately predictingwhich jobs
will be running at a future time on an HPC system [4]. Therefore,
the increase in mean and median accuracy with PRIONN over the
previous methods is substantial for prediction of system IO and
IO bursts, which we demonstrate in Section 4. Note how the user
predictions are substantially outperformed by PRIONN and the RF.

(a) (b)

Figure 8: Distribution of actual runtimes for our data (a) and
the relative accuracy for predicted job runtimes of user re-
quested time, RF, and our method (b).

3.2 Per-Job IO Predictions
For the IO resource predictions, we use the same dataset as in the
section above, andwe predict total bytes read and total bytes written
for each job. Because bandwidth is what an IO-aware scheduler
uses [5], we then compute the read and write bandwidth from the
predicted total bytes read and total bytes written. We deal with
a diverse dataset of jobs in terms of their actual read and write
bandwidth. Figure 9a shows the distribution of actual read and
write bandwidth for our dataset. In the figure we observe how the
mean bandwidth for read and write is orders of magnitude larger
than the median, indicating a handful of jobs in our dataset have
extremely large IO bandwidth compared to the majority of the
jobs. We first predict the total bytes read and total bytes written
for each job in our dataset with PRIONN and the RF. Note that
users are not providing this information in their job scripts and
thus, a comparison with the user predictions is not possible in this
case. We then compute the bandwidth by dividing the total bytes
read and written with the predicted runtimes of jobs. Figures 9b
and 9c show the boxplots of the relative accuracy for predicted
read and write bandwidth with RF and our tool respectively. The

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Wyatt et al.

Runtime MAE (minutes)
Dataset Data Size Smith, et al. [20] Our Replication
SDSC95 76,840 59.65 35.95
SDSC96 32,100 74.56 76.69

Table 2: Mean Absolute Error (MAE) for runtime from the Smith and co-workers’ paper and from the RF model considered in
this paper as the best traditional method because of its accuracy.

cross-comparison of these two figures outlines how our method
outperforms RF for both bandwidth values (i.e., read and write).
Specifically, PRIONN predictions have a mean accuracy of 80.2%
and 75.6% for read and write bandwidth, which is 12.1% and 9.6%
higher than the RF predictions.

(a) (b) (c)

Figure 9: Distribution of read and write bandwidth for our
dataset (a) and relative accuracy for predicted read andwrite
bandwidth with RF (b) and PRIONN (c).

4 APPLICATION TO REAL HPC SYSTEMS
We demonstrate the value of per-job runtime and IO predictions
from PRIONN to an IO-aware scheduler as part of the second phase
of our workflow. Specifically, Figure 10 shows how we use our per-
job runtime and IO predictions with the Flux open-source resource
management framework simulator and its IO-aware scheduler [1]
to predict system IO and IO bursts.

4.1 IO-aware Scheduler
An IO-aware scheduler relies on knowledge of IO behavior and
potential IO contention to schedule jobs such that IO bandwidth
contention is avoided. We leverage per-job runtime and IO usage
predictions from PRIONN to build this knowledge and drive the
IO-aware scheduler in its decision. To this end, we use the simulator
of the open-source, next-generation job scheduler Flux to mimic the
evolution of a high-end HPC system [1, 5]. We modify the simulator
to use job runtimes that are predicted either by PRIONN, defined
in Section 2, or by the user. Specifically, the scheduler uses our
runtime predictions to estimate when a job starts and completes; it
also combines the estimated job’s start time with our IO predictions
(made for the same job) to estimate the job’s impact on the system IO.

By incorporating the sum of all jobs’ IO impacts, we can ultimately
estimate future system IO (e.g., patterns including IO bursts).

4.2 Turnaround Time Prediction
The first step to an effective IO-aware scheduler is accurate turn-
around time prediction (i.e., the amount of time between when a
job is first submitted to the scheduler and when the job completes),
as shown in Figure 10. Turnaround time is necessary because it
provides insight to which jobs will be executing on the HPC system
at future times. The turnaround time prediction for a given job
depends on the predicted runtime of the currently queued or in
execution jobs. Therefore, inaccuracies of runtime predictions for
individual jobs can accumulate into inaccurate turnaround time
predictions. Relying on inaccurate runtime predictions, such as
those based on user estimates, can result in very poor turnaround
time predictions that are detrimental to an IO-aware scheduler.

To predict turnaround time, we submit jobs to our simulated
HPC system and record both the simulated turnaround time of
each job and the job’s execution schedule. When a job is submitted
to the system, a snapshot of the system is created. The snapshot
creation is followed by four steps. First, we copy the system state
(i.e., allocated nodes, free nodes, simulated time, executing jobs, and
queued jobs) in memory. Second, we replace the runtime of each job
in execution and in the queue with the predicted job runtime. Third,
we simulate the evolution of the system state from the snapshot
until the submitted job has completed. Last, we record the difference
between completion time and submission time of the job as our
turnaround time prediction.

To quantify the turnaround time prediction accuracy, we sample
five 10,000 job subsets from our original data; the subsets were
randomly selected across the span of the job traces. We run five
simulations, one for each job subset, and predict turnaround time
as described above. Figure 11a shows the distribution of the simu-
lations’ turnaround times (i.e., the turnaround time observed in the
simulation). Figure 11b compares the resulting relative accuracy
of turnaround time predictions when the simulated system uses
user-requested runtime (left) and our framework’s runtime (right).
We observe that our framework improves the mean accuracy by
14.0% and the median accuracy by 14.1% over user-requested run-
time. Our mean and median turnaround time accuracy are 42.1%
and 40.8%. Additionally, we note that the 75th and 95th percentile
accuracies are over 20% greater with our predictions compared to
user-requested runtimes. This indicates that using per-job runtime
predictions from PRIONN achieves greater than 70% accuracy for
turnaround time predictions for the upper-quartile jobs and better
turnaround time predictions than users for all jobs.

PRIONN: Predicting Runtime and IO using Neural Networks ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Figure 10: Overview showing the application of our runtime and IO predictions to an IO-aware scheduler to predict system IO
and IO bursts.

(a) (b)

Figure 11: Distribution of our simulations’ turnaround
times (a) and relative accuracy of turnaround time predic-
tions with user requested runtime and our method’s run-
time (b).

4.3 System IO Prediction
The next step to an IO-aware scheduler is to obtain system IO
predictions. To this end, we combine turnaround time predictions
from our simulated system with per-job IO usage predictions from
PRIONN (i.e., predicted read and write bandwidth), as shown in
Figure 10. Specifically, to predict the total system IO in use at a
given time, we first use the job turnaround time predictions to
determine which jobs are running on the system at that time. Then,
for the running jobs, we sum their predicted IO usage, producing
the estimated total system IO.

To quantify the accuracy of the estimated total system IO, we
perform two types of evaluations, each one using different sources
for runtime and turnaround time. In the first evaluation, we use

perfect knowledge of runtime and turnaround time (i.e., from real
job trace) and our predictions for per-job IO usage. This evaluation
isolates the accuracy of our IO predictions from the accuracy of
our runtime and turnaround time predictions to demonstrates the
strength of PRIONN’s per-job IO predictions alone. In the second
evaluation, we use our runtime, turnaround time, and IO usage
predictions (i.e., from Sections 3 and 4.2). This evaluation reflects
how an IO-aware scheduler can rely on runtime and IO usage
predictions from PRIONN in a real-world or production scenario.

For each one of the two evaluations, we report two metrics. First,
we report the relative accuracy of our predicted IO behavior (i.e.,
system bandwidth over time). Second, we measure the precision
and sensitivity (i.e., recall) for predicting IO bursts, or unusually
high levels of IO bandwidth, that occur in the system IO behavior.
IO bursts are of particular importance to an IO-aware scheduler
because they are the most likely time for IO contention to occur.
We define IO bursts based on the actual system IO bandwidth dis-
tribution shown in Figure 12a. We calculate the mean and standard
deviation of this distribution. One standard deviation above the
mean is marked with a green horizontal line at 1.35 × 109 bytes/s
in Figure 12a. We define an IO burst as any bandwidth measure-
ment above this value. For each real IO burst, we determine if an
equivalent IO burst is also predicted within a given window of time.
For example, with a three-minute window, we look for a predicted
burst one minute before the actual IO burst, at the time of the real
IO burst, and one minute after the actual IO burst. If a burst is
predicted in this window, we record a True Positive (TP). We record
False Positives (FP) (i.e., we predict an IO burst when there is not
an IO burst) and False Negatives (FN) (i.e., there is an IO burst but
we do not predict an IO burst) using this same window technique.
We use these values (i.e., TP, FP, and FN) to calculate sensitivity
and precision for our IO burst predictions. Sensitivity and precision
have a range from 0% to 100%; larger values indicate better perfor-
mance. Sensitivity is the ratio of correctly predicted IO bursts to
actual IO bursts (i.e., T P

T P+FN). Precision is the ratio of correctly
predicted IO bursts to total predicted IO bursts (i.e., T P

T P+F P).
For our first evaluation of system IO bandwidth prediction, we

use perfect turnaround time knowledge for all jobs in our dataset

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Wyatt et al.

and per-job IO usage predictions from PRIONN. Figure 12b shows
our first metric: the relative accuracy of each system IO prediction.
We achieve the mean and median accuracy of 63.6% and 55.3%
respectively. Figure 13 shows our second metric: the sensitivity and
precision of our IO burst prediction across windows ranging from
5 minutes to 60 minutes. We observe in the figure that we predict
47.5% of real IO bursts within two minutes of their occurrence (i.e.,
sensitivity is 47.5% at a window size of 5 minutes). It also shows that
73.9% of predicted IO bursts correctly predict a real IO burst within
two minutes of it occurring (i.e., precision is 73.9% at a window
size of 5 minutes). Finally, we note that as the window size for
predicting IO bursts increases, the sensitivity and precision also
increase. From these results, we can see that IO predictions from
PRIONN are sufficiently accurate to predict nearly 75% of IO bursts.

(a) (b)

Figure 12: Actual aggregate IO (a) and relative accuracy of
the system’s accumulate IO predictions (b) using perfect
turnaround time knowledge.

For our second evaluation of system IO bandwidth prediction, we
use predicted turnaround time and IO usage for our five samples of
10,000 jobs. Figure 14a shows the distribution of simulated system
IO. We compare the distributions of system IO for jobs used in our
first evaluation (i.e., all jobs), shown in Figure 12a, and jobs used
in our second evaluation (i.e., sampled jobs), shown in Figure 14a.
We note that the distributions of system IO are not identical, but
have similar maximum, mean, and median values. This indicates
that the randomly chosen sample of jobs is a good representation
of all jobs. Figure 14b shows our first metric: the relative accuracy
of each system IO prediction using predicted turnaround time and
predicted IO usage. Comparing Figure 12b with Figure 14b shows
that the prediction accuracy for system IO decreases when our turn-
around time predictions are used in place of perfect turnaround
time knowledge. This is an expected result of using less accurate

Figure 13: Sensitivity and precision of our IO burst predic-
tions across windows ranging from 5minutes to 60 minutes
using perfect turnaround time knowledge.

turnaround time information. Despite the decreased average accu-
racy, we are still able to accurately predict several patterns in the
IO behavior in the simulation, as indicated by the top whisker of
the boxplot in Figure 14b.

(a) (b)

Figure 14: Actual aggregate IO (a) and relative accuracy of
the system’s accumulate IO predictions (b) using our pre-
dicted turnaround time from our simulated system.

PRIONN: Predicting Runtime and IO using Neural Networks ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Figure 15 shows our second metric: the sensitivity and precision
of our IO burst prediction across windows ranging from 5 minutes
to 60 minutes. We observe in Figure 15 that we predict 55.3% of real
IO bursts within two minutes of them occurring (i.e., sensitivity is
55.3% at a window size of 5 minutes). It also shows that 70.0% of
predicted IO bursts predict a real IO burst within two minutes of it
occurring (i.e., precision is 70.0% at a window size of 5 minutes). We
compare sensitivity and precision of IO burst prediction in our first
evaluation, shown in Figure 13, and our second evaluation, shown in
Figure 15. We note that despite switching from perfect to predicted
turnaround time, we achieve similar sensitivity and precision. Like
Figure 13, we also observe that sensitivity and precision increase
as window size increases in Figure 15. These results indicate that
per-job runtime and IO usage predictions from PRIONN provide
the IO-aware scheduler with enough information to predict over
50% of IO bursts correctly. This is a huge improvement over being
able to predict 0% of IO bursts without PRIONN.

Figure 15: Sensitivity and precision of our IO burst predic-
tion across windows ranging from 5 minutes to 60 minutes
using our predicted turnaround time from our simulated
system.

Our results in this section indicate that runtime and IO predic-
tions from PRIONN can be used to generate accurate predictions
of HPC system IO bandwidth and IO bursts. We show that with up
to 57.9% mean turnaround prediction error, future IO bursts can be
predicted with >50% accuracy. Additionally, with up to 36.4% mean
system IO prediction error, future IO bursts can be predicted with
>50% accuracy.

5 RELATEDWORK
Many HPC job resource usage prediction methods have been pro-
posed. Previous methods have involved a variety of machine learn-
ing models, familiar and novel. The most common attribute of each
resource usage prediction method is the use of manually extracted
features. Most of the previous efforts to predict job resource usage
have focused on runtime predictions and derivatives of runtime,
like turnaround time and wait time.

Smith, Foster, and Taylor used historical HPC job data to predict
runtime in [19, 20]. For each job runtime prediction, they train a
linear regression model based on historically similar jobs. Job simi-
larity is calculated with several extracted features, including user
and job queue. Other runtime prediction papers have utilized simi-
lar methods of manually extracted features and machine learning
models as Smith, Foster, and Taylor. For example, Krishnaswamy,
Loke, and Zaslavsky develop similarity templates for predicting job
runtime based on extracted features in [7]. Cunha et al. use a kNN
model to predict runtime and turnaround time for HPC jobs in [3].
This work utilizes extracted features from job scripts augmented
with data from the scheduler, such as the number of jobs in the
queue at job submission time. Chen, Lu, and Pattabiraman present
a method for predicting runtimes of jobs being executed using
features extracted from log files and a hidden Markov model [2].
Tsafrir, Etsion, and Feitelson predict job runtimes based on a user-
centric model in [21]. The average users’ previous job runtimes and
use this as an estimation for the runtime of the next job submitted
by a user. Downey developed a statistical model for predicting the
queue time of a job based on jobs already running on an HPC sys-
tem in [4]. Similarly, in the work of Nurmi, Brevik, and Wolksi a
statistical method is developed, QBETS, to predict wait times for
jobs [14]. Both of these works make predictions based on wait times
of jobs currently running on a system and do not build a prediction
model based on extracted features.

A smaller body of work has also focused on other job resources,
such as IO. Lofstead et al. outline challenges of dealing with IO
contention of parallel file systems and the benefits for preventing
contention that come with knowing job IO behavior [10]. Other
works present methods for using extracted features to predict IO
among other resources to prevent resource contention. McKenna
et al. test several machine learning methods for predicting runtime
and IO usage of HPC jobs in [12]. They test kNN, DT, and RF
models with manually extracted features from job scripts and job
logs. Rodrigues et al. predict job runtime, wait time, and memory
usage with an ensemble of machine learning algorithms, including
kNN and RF, in [16]. Their method extracted features from log
files and batch scheduler logs. Matsunaga and Fortes investigate
the prediction of many job features, such as CPU, memory, and IO
usage with several machine learning algorithms using extracted
features in [11].

To the best of our knowledge, no previous work has been pub-
lished on the prediction of runtime and IO use of jobs based on
entire job scripts and used to predict IO activity, such as IO bursts,
for IO-aware schedulers.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Wyatt et al.

6 CONCLUSION AND FUTUREWORK
In this paper, we show the benefits of using PRIONN, our tool to
Predict Runtime and IO using Neural Networks, for an IO-aware
scheduler. Our tool relies on a novel method for mapping the text
of whole job scripts into image-like representations. PRIONN uti-
lizes the image-like representations to train a 2D-CNN model for
accurate per-job runtime and IO resource prediction. We achieve
accuracies for runtime and IO resource predictions that exceed pre-
vious work. Specifically, we predict runtime and IO resources with
over 75% mean and 98% median accuracy across nearly 300,000 jobs
from a large cluster at LLNL. We apply the predictions from PRI-
ONN to an HPC system simulator to accurately predict system IO
and IO bursts. We correctly predict over 50% of future IO bursts (i.e.,
times of IO contention). Our work demonstrates that PRIONN can
augment schedulers with the per-job resource usage knowledge
necessary to enable IO-aware scheduling. Future work includes
incorporating application input decks into PRIONN’s workflow
and the prediction of other types of resources such as power and
network.

ACKNOWLEDGMENT
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. LLNL-CONF-739253.

REFERENCES
[1] Dong H. Ahn, Jim Garlick, Mark Grondona, Don Lipari, Becky Springmeyer, and

Martin Schulz. 2014. Flux: a next-generation resource management framework
for large HPC centers. In 10th International Workshop on Scheduling and Resource
Management for Parallel and Distributed Systems. 9–17.

[2] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. 2013. Predicting job com-
pletion times using system logs in supercomputing clusters. In Proceedings of the
43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop
(DSN-W). 1–8.

[3] Renato LF. Cunha, Eduardo R. Rodrigues, Leonardo P. Tizzei, and Marco AS.
Netto. 2017. Job placement advisor based on turnaround predictions for HPC
hybrid clouds. Future Generation Computer Systems 67 (2017), 35–46.

[4] Allen B. Downey. 1997. Using queue time predictions for processor allocation. In
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP). 35–57.

[5] Stephen Herbein, Dong H. Ahn, Don Lipari, Thomas R.W. Scogland, Marc Stear-
man, Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela Taufer. 2016.
Scalable I/O-aware job scheduling for burst buffer enabled hpc clusters. In Pro-
ceedings of the 25th ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’16). ACM, New York, NY, USA, 69–80.

[6] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP). 1746–1751.

[7] Shonali Krishnaswamy, Seng Wai Loke, and Arkady Zaslavsky. 2004. Estimating
computation times of data-intensive applications. IEEE Distributed Systems Online
5, 4 (2004).

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet clas-
sification with deep convolutional neural networks. In Proceedings of the 25th
Neural Information Processing Systems Conference (NIPS). 1097–1105.

[9] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent Convolutional Neu-
ral Networks for Text Classification. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI), Vol. 333. 2267–2273.

[10] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Oldfield, Todd Korden-
brock, Karsten Schwan, and Matthew Wolf. 2010. Managing Variability in the IO
Performance of Petascale Storage Systems. In Proceedings of the 22nd ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 1–12.

[11] Andréa Matsunaga and José AB Fortes. 2010. On the use of machine learning to
predict the time and resources consumed by applications. In Proceedings of the
10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
(CCGrid). 495–504.

[12] Ryan McKenna, Stephen Herbein, Adam Moody, Todd Gamblin, and Michela
Taufer. 2016. Machine Learning Predictions of Runtime and IO Traffic on High-
End Clusters. In 2016 IEEE International Conference on Cluster Computing (CLUS-
TER). 255–258.

[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Proceedings of the 26th Neural Information Processing Systems Conference (NIPS).
3111–3119.

[14] Daniel Nurmi, John Brevik, and Rich Wolski. 2007. QBETS: queue bounds es-
timation from time series. InWorkshop on Job Scheduling Strategies for Parallel
Processing (JSSPP). 76–101.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[16] Eduardo R. Rodrigues, Renato LF. Cunha, Marco AS. Netto, and Michael Spriggs.
2016. Helping HPC users specify job memory requirements via machine learning.
In Proceedings of the Third International Workshop on HPC User Support Tools.
6–13.

[17] Patrice Y Simard, David Steinkraus, John C Platt, et al. 2003. Best Practices for
Convolutional Neural Networks Applied to Visual Document Analysis. In Pro-
ceedings of the 7th International Conference on Document Analysis and Recognition
(ICDAR), Vol. 3. 958–962.

[18] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[19] Warren Smith, Ian Foster, and Valerie Taylor. 1998. Predicting application run
times using historical information. In Workshop Job Scheduling Strategies for
Parallel Processing (JSSPP). 122–142.

[20] Warren Smith, Valerie Taylor, and Ian Foster. 1999. Using run-time predictions
to estimate queue wait times and improve scheduler performance. InWorkshop
on Job Scheduling Strategies for Parallel Processing (JSSPP). 202–219.

[21] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. 2007. Backfilling using system-
generated predictions rather than user runtime estimates. IEEE Transactions on
Parallel and Distributed Systems 18, 6 (2007).

	Abstract
	1 Introduction
	2 Predicting Resource Usage
	2.1 Job Script Data Processing
	2.2 Machine Learning Models
	2.3 Training and Evaluation
	2.4 Optimal Prediction Parameters

	3 Evaluation of Resource Predictions
	3.1 Per-Job Runtime Predictions
	3.2 Per-Job IO Predictions

	4 Application to Real HPC Systems
	4.1 IO-aware Scheduler
	4.2 Turnaround Time Prediction
	4.3 System IO Prediction

	5 Related Work
	6 Conclusion and Future Work
	References

