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Abstract—Resource and job management software is crucial
to High Performance Computing (HPC) for efficient application
execution. However, current systems and approaches can no
longer keep up with the challenges large HPC centers are facing
due to ever-increasing system scales, resource and workload diver-
sity, interplays between various resources (e.g., between compute
clusters and a global file system), and complexity of resource
constraints such as strict power budgeting. To address this gap,
we propose Flux, an extensible job and resource management
framework specifically designed to deal with the requirements of
next-generation HPC centers. Flux targets an entire computing
facility as one common pool of diverse sets of resources, enabling
the facility to accommodate site-wide constraints (e.g., for power
limits). Yet, its scalable and distributed design still offers scalable
and effective scheduling strategies. This paper details the design
of Flux and describes and evaluates our initial prototyping effort
of the key run-time components. Our results show that our run-
time prototype provides strong and predictable scalability.
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I. INTRODUCTION

Scalable Resource and Job Management Software (RJMS)
is critical for High Performance Computing (HPC). It is the
centerpiece that enables efficient execution of HPC applica-
tions while providing the compute center with the means to
maximize the utilization of its diverse computing resources [1].
However, current state-of-the-art RJMS systems are becoming
increasingly ineffective in dealing with the growing diversity
and size of resources fielded in HPC centers today. Large-
scale resources are no longer limited to a few extremely large
individual machines like Sequoia (LLNL) [2], but are becom-
ing commonplace through all computing resources sited at a
center, including commodity Linux clusters. A modern RJMS
must provide management services to all of the resources at the
center, while maintaining scalability, low noise, fault tolerance,
and enforcing global constraints.

In addition, greater difficulties in code development on
larger systems impose increasingly challenging requirements
on debugging, tuning, testing, and verification as well as
new techniques for accurate correlations between user-level
errors and system-level events. These tools require adequate
RJMS support [3], [4], [5], [6], [7] for launching of daemons,
allocation of analysis resources, or the ability for secure third-
party access to running jobs. Unless the RJMS can effectively
address these requirements, HPC users may suffer significant

productivity losses across the full application development life-
cycle.

The traditional resource and job management paradigm for
large HPC centers organizes the resources sited at a center in
a static and flat hierarchy. Typically, it runs an RJMS instance
such as SLURM [8] to manage and schedule an individual
cluster, and those instances are often connected together by
separate job management software, like MOAB [9], PBS
Pro [10], and LSF [11]. While simple, the increasing interplay
between various classes of compute resources across the center
renders this paradigm often inflexible and ineffective. For ex-
ample, this paradigm cannot effectively schedule applications
that utilize site-wide shared resources such as file systems.
Without scheduling file I/O-intensive jobs to both compute
resources and file systems, overlapping I/O bursts coming
from only a handful of unrelated jobs can disrupt the entire
center [6], [4]. In addition, with such an inflexible and shallow
hierarchy, dynamically imposing complex resource constraints
at various levels at the center is becoming increasingly in-
tractable.

To address these challenges, we need a new manage-
ment paradigm that is capable of scalably managing all of
the resources (e.g., compute, storage, and visualization) at
a center together under one common RJMS framework,
(co-)scheduling jobs to these various types of resources, and
dynamically enforcing global and local resource constraints.
The only way to achieve this with scalability in terms of
the total number of resources as well as jobs is that the
RJMS system must facilitate management and scheduler par-
allelism [12], [13] and further provide this parallelism through
hierarchical, multilevel management and scheduling schemes
with support for arbitrary numbers of levels. The latter also
requires capabilities for customization or specialization (in
terms of policy, access control, etc) at any level of this dynamic
hierarchy based on user requests.

In this paper, we present Flux, a new open-source RJMS
framework that implements this new paradigm. We will de-
scribe its design and run-time architecture and show how it
will be capable of providing the necessary RJMS capabilities
for next-generation systems and centers. To demonstrate its
feasibility, we have prototyped and evaluated two of its core
run-time components: the communication framework termed
the Comms Message Broker (CMB) and Key Value Store
(KVS) to hold Flux state. CMB and KVS together represent a



novel back-bone overlay network for Flux, which can replace
all the redundant and independent daemon infrastructures that
currently exist in a typical cluster.

This paper makes the following contributions:

• We describe, based on experience in one of the world’s
largest HPC centers, the emerging resource and job
management challenges that demand a new paradigm;

• We present the design and run-time architecture of
Flux, a novel RJMS system that embodies this new
paradigm;

• We evaluate two of the core run-time components of
Flux to demonstrate the feasibility of our approach.

The results of our performance evaluation and performance
models show that both KVS and CMB provide strong and pre-
dictable scaling properties and provide a scalable foundation
for the Flux architecture.

II. A NEW MANAGEMENT PARADIGM FOR HPC

HPC centers typically provide a wide range of platforms on
which scientific applications perform computations. The RJMS
system is responsible for efficiently delivering compute cycles
of these platforms to multiple users who must submit jobs
to run their applications. Thus, the RJMS matches the users’
job request with the available resources and provides efficient
functions for building, submitting, launching, and monitoring
jobs [1]. Typically, an HPC center runs an RJMS instance [8]
to manage and schedule an individual system (e.g., cluster)
and additionally employs separate grid software to tie these
instances together.

However, several growing trends present major challenges
to this current management paradigm. First, systems sited
at one center are growing larger and types of resources are
becoming increasingly diverse [1]. Second, interplays between
various classes of resources (e.g., between compute clusters
and a global file system) are becoming more complicated and
disruptive [6], [4]. Third, resource constraints are also becom-
ing increasingly complex in a multidimensional, dynamic, and
hierarchical fashion [14] (e.g., dynamic power capping at the
level of systems, compute racks, and/or nodes). Further, the
need for code-development tools and their requirements on
tool launching and job access impose challenging requirements
on the RJMS [3], [4], [5], [6], [7]. Finally, the workloads
themselves are becoming diverse, dynamic, and large, and
are moving away from individual monolithic jobs. Instead,
ensembles of jobs, e.g., for Uncertainty Quantification or
Scalebriding Applications, are becoming increasingly com-
monplace.

To address the issues effectively, large HPC centers demand
a new resource and job management paradigm. The new
paradigm must increase its purview and scalably manage
resources across the entire center. Perhaps more importantly,
it must be implemented under one common RJMS framework
so that its schedulers can make use of its full resource
representations. Only this allows centers to (co-)schedule jobs
effectively to various types of resources and to provide much
richer provenance on jobs (e.g., correlation between a user-
level error and other system activities). The new paradigm,

however, creates a series of challenges a new RJMS must
overcome:

Challenge 1: Multidimensional Scaling — The new paradigm
requires that the RJMS can impose complex, multidimensional
resource bounds at any scale, from the center-wide level,
down to the level of individual processes, and enable the
most efficient execution and scheduling of workloads within
these bounds. This imposes unprecedented scale challenges in
multiple dimensions, including supporting extreme scalability,
addressing noise as concurrency increases, and managing a
drastically increased amount of run-time information that must
be monitored, traced, and stored. The new paradigm must
efficiently handle increased scale in numbers of resources as
well as jobs and other dimensions of RJMS data.

Challenge 2: Diverse workloads — HPC applications are
known to have disparate performance limiting factors. This
requires the new paradigm to have a rich resource model,
including the representation for diverse types of resources
such as file systems, networks, visualization hardware, and
heterogeneous compute engines. With a richer resource model,
the RJMS will be capable of imposing complex, multidimen-
sional resource bounds, as opposed to the simplistic traditional
resource model that is fundamentally based on a flat list of
nodes, and allowing it to allocate resources tailored to the
disparate limiting factors of HPC applications.

Challenge 3: Dynamic Workloads — Resource allocations
must be elastic, i.e., resource allocations must be able to grow
and shrink dynamically. This is necessary to support HPC
applications with different phases with disparate performance-
limiting factors. Different resource types have different elastic
properties (e.g., power is a much more elastic resource than
compute nodes) restricting decision points and allocation gran-
ularity. One consequence of this is that the RJMS must support
multiple levels of elasticity as a function of dynamically chang-
ing performance limiters as well as their limiting resource
types—e.g., rigid vs. moldable vs. malleable scheduling [15]
against different workload and resource types.

Challenge 4: Productivity — The new paradigm must ad-
dress increasing complexities in code development and system
administration by facilitating the creation of more effective
diagnostic and analysis tools. For example, it must provide
basic, scalable monitoring and communication primitives at the
job level that can be leveraged by tools. It will encourage a
richer, stronger tool ecosystem. Better tools will lead to higher
productivity for all stakeholders, including end users.

System Challenges — In addition to these main requirements
that come from the user side of the RJMS, we also face
internal challenges that need to be hidden from the user. For
example, in a global model, the risk of higher downtime costs
arises. If the RJMS is inadequately designed, a downtime could
negatively impact the availability of a large portion of the
center’s resources. Thus, it must be tolerant of hardware and
software faults and failures and have no single point of failure
as well as support live software upgrades. Other challenges
include security, integration risk, and backwards compatibility.

This series of challenges strongly motivates a specific
management and scheduling scheme: the new RJMS must
hierarchically and dynamically manage and schedule the re-
sources under one common software framework. The divide-



and-conquer approach will then allow the RJMS to scale to
massive amounts of resources sited at a large center. Further,
the hierarchical, multilevel job scheduling will then facilitate
scheduler parallelism [12], [13], and this will allow the RJMS
to scale to massive numbers of jobs scheduled across the
center. In this scheme, higher-level schedulers must allow a site
to impose site-wide policies, contracts, and constraints while
lower-level schedulers should allow efficient use of any subsets
of resources in accordance with workload types. Finally, the
RJMS must be capable of dynamically supporting arbitrarily
deep levels in this management and scheduler hierarchy with
an ability to impose different constraints at each level.

III. CONCEPTUAL DESIGN OF FLUX

In this section, we present Flux, a novel open-source RJMS
framework that targets the paradigm discussed above, and
describe its fundamental design concepts.

Unified Job Model: In the traditional paradigm, a job is simply
defined to be a resource allocation. Flux, however, abstracts
this notion to an independent RJMS instance that can either
be used to run a single application or that can run its own job
management services, which then can recursively accept and
schedule (sub-)jobs and provide its own services to them. In
the following we will refer to this simply as a Flux job or just a
job. To provide the necessary flexibility, each RJMS instance
allows specialized service plugins to be instantiated so that
the resources managed by the Flux job can be used differently
than other resources (in terms of security, scheduling policy, or
resource constraints). This model forms the foundation for hi-
erarchical, multilevel resource management and job scheduling
with resource subset specialization.

Job Hierarchy Model: To scale the new paradigm to the
entire HPC center, we must avoid a centralized approach.
Instead, Flux exploits the hierarchical resource management
and job scheduling discussed above and organizes itself in a
tree-based hierarchy of Flux jobs. Several guiding principles
throughout the job hierarchy strike a balance between the
management responsibility of a parent job and the delegation
and empowerment of a child job:

• Parent bounding rule: the parent job grants and con-
fines the resource allocation of all of its children.

• Child empowerment rule: within the bounds set by
the parent, the child job is delegated the ownership
of the allocation and becomes solely responsible for
most efficient uses of the resources.

• Parental consent rule: the child job asks its parent
when it wants to grow or shrink the resource allo-
cation, and it is up to the parent to grant the request.

This model has many advantages for scalability of both
resource management and job scheduling. The independent
and specialized Flux service instance of a job becomes only
responsible for managing its direct children jobs, which would
be only a small fraction of the total number of jobs at the
center. As sibling jobs run simultaneously, their independent
Flux instances will perform concurrent management services.

For example, for job scheduling, this model enables Flux
to exploit scheduling parallelism [12], [13]. A parent scheduler

schedules at coarse granularity over a large collection of
resources and leases different resource subsets to its children
schedulers. At the same time, this will enable Flux to specialize
the scheduling behaviors on subsets of resources without
having to introduce a complex global scheduling policy into
the centralized, monolithic scheduler.

Generalized Resource Model: In the traditional paradigm,
compute resources are modeled primarily as a collection of
compute nodes. But this is a simplistic perspective ill-suited
for the new paradigm. Today’s applications are diverse with
disparate limiting performance factors beyond floating point
computation. Further, computing centers are increasingly con-
cerned about managing new resource types such as power
and shared persistent storage. Flux therefore introduces a
generalized resource model that is extensible and covers any
kind of resource and its relationships. This enables scheduling
decisions based on many types of resources.

Multilevel Resource Elasticity Model: As our applications and
their programming models are becoming increasingly dynamic,
the new paradigm demands an elasticity model where an
existing resource allocation can grow and shrink, depending
on the current needs of applications and/or the HPC center.
Flux supports the elasticity model within our job hierarchy
framework above: a child job sends a grow or shrink request
to its parent, which can be aggregated up the job hierarchy
until all requisite constraints are known for this request.
Also, combining this with the generalized resource model, the
elasticity can be expressed for many resources such as power
and file I/O bandwidth.

Common Scalable Communication Infrastructure Model: To
maintain scalability both within and across jobs, Flux provides
a common scalable communication framework within each
job. When a Flux job is created, a secure, scalable overlay
network with common communication service is established
across its allocated nodes. Except for the root-level job, the
existing communication session of the parent job assists the
child job with rapid creation of its own session.

A communication session is only aware of its parent and
child and passes the limited set of control information through
its communication channel. Thus, this model provides highly
scalable communication to management services within a Flux
job, while limiting communications between jobs, addressing
both the multidimensional scale as well as security issues.
Further, this per-job backbone communication network sup-
ports well-known bootstrap interfaces for distributed programs
including many MPI implementations as well as run-time tools.
This provides tightly integrated support for the development
and use of scalable run-time tools.

IV. FLUX RUN-TIME SYSTEM

To explore the feasibility of the Flux design, we imple-
mented prototypes of the two key components in the Flux
run-time environment.

A. Communication Message Broker

A communication framework supports our hierarchical
job model by establishing a comms session to contain each
Flux instance and provide a foundation for the distributed



Fig. 1: A comms session

components upon which Flux is built. As this framework
must follow our common communication infrastructure model,
it enables secure, scalable communication within a comms
session, limits communication between sessions, and allows
new comms sessions to be created, resized, destroyed, and
monitored by existing ones in a parent-child relationship. The
framework is persistent for the life of a Flux job and is shared
among Flux services, tools, and application run-times.

We have built a prototype of the framework using the
ØMQ [16] messaging library, which provides the ability to pass
messages securely over multiple transports, including TCP,
UNIX domain IPC, shared memory, and Pragmatic General
Multicast (PGM) [17]. Its socket-like API abstracts common
messaging patterns such as request-reply, publish-subscribe,
and push-pull.

Our prototype consists of a distributed Comms Message
Broker (CMB) daemon that runs on each node of a comms
session, interconnected using three persistent overlay net-
work planes: a PGM publish-subscribe bus for events and
synchronization heartbeats; a TCP request-response tree for
scalable RPCs, barriers, and reductions; and a secondary TCP
request-response overlay with configurable topology for rank-
addressed RPCs.

The comms session wire-up is depicted in Figure 1. Each
message plane implements reliable, in-order message delivery,
and can self-heal when interior nodes fail. Although a binary
RPC/reduction tree is pictured, the tree shape is configurable.
A design for comprehensive fault tolerance, including root
node failure, is a near-term project activity.

The CMB allows us to experiment with loosely coupled
distributed services that share this message routing frame-
work. The various service components of Flux have been
implemented as comms modules, plugins which are loaded
into the CMB address space and pass messages over shared
memory. Comms modules currently exist for the components
listed in Table I. Each embodies an active topic for study and
experimentation.

In addition to comms modules, external programs commu-
nicate with the CMB over a UNIX domain socket. A flux
utility wraps command line access to about two dozen modular
Flux sub-commands, and a custom PMI [18] library allows
MPI run-times to access the Flux KVS and collective barrier
modules over this transport.

All CMB messages have a uniform, multi-part message
format consisting of at least a header frame and a JSON [19]
frame. The header frame identifies the message recipient using
a hierarchical name space. For example, a message sent to

Plugin Description
hb A periodic heartbeat event multicast across the comms session syn-

chronizes background activity to reduce scheduling jitter.
live Each tree node receives heartbeat-synchronized hello messages from

its children. After a configurable number of missed messages, a
liveness event is issued for a dead child.

log Log messages are reduced and filtered before being placed in a log
file at the session root. A circular debug buffer provides log context
in response to a fault event.

mon Lua scripts stored in the KVS activate heartbeat-synchronized sam-
pling. Samples are reduced and stored in the KVS.

group Flux groups define and manage collection of processes that can
participate in collective operations.

barrier Collective barriers provide synchronization across Flux groups.
kvs A distributed key-value store provides a scalable multi-purpose data

store for Flux and other tools operating within the comms session.
wrexec Remote processes can be launched in bulk, monitored, receive signals,

and have standard I/O captured in the KVS.
resrc Resources are enumerated in the KVS and allocated when the sched-

uler runs an application.

TABLE I: Prototyped Comms Modules

kvs.put is routed to the kvs comms module, and internally to its
handler for put. The free-form JSON frame contains payload
parsed by the addressed comms module.

RPC requests are routed “upstream” in the tree network
to the first comms module that matches it, possibly traversing
CMB nodes. RPC responses are routed back through the same
set of hops, in reverse. A comms module may thus be loaded
at a configurable tree depth to tune its level of distribution or to
conserve node resources for application workloads toward the
leaves. The tree topology of the RPC overlay network permits
data reductions to be performed by aggregating and retransmit-
ting upstream requests between instances of a comms module.

Alternatively, an RPC may be addressed to a specific
CMB rank using a separate overlay, currently utilizing a ring
topology which allows ranks to be trivially reached without
routing tables. The main use of this addressing mode is in
tools for debugging the system, where the high latency of a
ring is manageable and preferable over additional complexity.

B. Distributed Key-Value Store

Key-Value Stores (KVS) have become ubiquitous building
blocks in large-scale Internet services but have been underuti-
lized in HPC [20]. For Flux, however it provides one of the
essential building blocks. The Flux KVS is implemented as
a comms module that utilizes the request-response and event
overlay networks. It provides a general purpose data store used
by other Flux components, and supports the distributed caching
and synchronization needed for parallel data exchanges, such
as required for MPI bootstrap.

Our current prototype stores JSON values under a hier-
archical key space with a single master node and multiple
caching slaves. The weak consistency of our slave caches has
the following properties, using Vogels’ taxonomy [21].

• Causal consistency: If process A communicates with
process B that it has updated a data item (passing a
store version in that message), a subsequent access by
process B will return the updated value.

• Read-your-writes consistency: A process having up-
dated a data item, never accesses an older value.

• Monotonic read consistency: If a process has seen a
particular value for an object, any subsequent accesses
will never return previous values.



We achieve these properties with a simple design based on
hash trees and content-addressable storage, borrowing ideas
from ZFS [22] and git. JSON objects are placed in a content-
addressable object store, hashed by their SHA1 digests. Hi-
erarchical key names are broken up into path components
that reference directories. A directory is an object that maps
a list of names to other objects by their SHA1 reference.
An external root directory SHA1 reference points to the root
directory object. For example, if the SHA1 root reference is
1c002dde..., and we have stored a.b.c = 42, we would
look it up as follows:

1) load root directory from 1c002dde..., find a is at
3f2243ef....

2) load a from 3f2243ef..., find b is at
023e9b2d....

3) load b from 023e9b2d..., find c is at
7ff234a8....

4) load c from 7ff234a8..., and return it (42).

An important property of this structure is that any update
results in a new SHA1 root reference. Continuing the example,
to update a.b.c = 43, we:

1) store 43 to 62302aff....
2) update b to associate c with 62302aff..., and

store b to 8fe9b2c3....
3) update a to associate b with 8fe9b2c3..., and

store a to aacc76b4....
4) update root to associate a with aacc76b4..., and

store root to 033fbe92....
5) the new root reference is 033fbe92.

All updates are applied first on the master node at the root
of the CMB tree, which then publishes a new root reference
as a CMB event. Slaves keep consistent with the master by
switching their root reference in response to this event, so
that all new look-ups must begin at the new root directory.
Objects missing from the slave object cache during a look-up
are faulted in from their CMB-tree parent, recursing up the tree
until the request can be fulfilled. Unused slave object cache
entries are expired after a period of disuse to save memory.

The CMB event overlay network guarantees ordered de-
livery, which gives us monotonic read consistency for free.
We achieve read-your-writes consistency by returning the new
root reference in response to a commit request and applying it
before returning to the caller. We avoid racing with the event
update and potentially breaking monotonic read consistency
by versioning the root references and ensuring they are never
applied out of order. We achieve causal consistency by allow-
ing this version number to be read after an update, and by
providing another call to wait for this root version or greater
on another node before accessing the value.

The KVS API includes classes of functions for putting,
committing, and getting KVS objects. First, kvs_put
(key, val) writes val to the object store asynchronously in
a write-back mode through the tree of slave caches. The (key,
SHA1) tuple is cached locally pending commit.

kvs_commit () synchronously flushes (key, SHA1) tu-
ples and any still-dirty objects to the master. On the master, it
then processes the set of tuples, creating new directory objects

as described above, finally arriving at a new root SHA1. It
then updates the root reference session-wide with a multicast
event. Since both new and old objects coexist in the caches, the
switch from old to new root is atomic. kvs_get_version
() and kvs_wait_version () are available for causal
consistency as described above. kvs_fence () commits for
a group of processes collectively through the internal use of a
collective barrier.

kvs_get (key) recursively looks up the key starting
with the current root reference, faults in any missing objects
through the tree of slave caches, and returns the terminal
object. kvs_watch (key, callback) is a get variant
which registers a callback to be triggered whenever the value
of key changes. It accomplishes this by internally performing
a get on the watched value in response to each root update,
comparing the new and old values, and calling the callback if
they are different. Due to our hash-tree organization, a watched
directory changes if keys under it at any path depth change.

V. RESULTS

In the following, we evaluate the performance and scal-
ability of our CMB and KVS prototypes using a dedicated
test called KVS Access Patterns (KAP). KAP allows us to
stress both the KVS abstraction as well as the underlying
CMB communication. It models KVS access patterns through
various interactions between KVS writers and readers. Writers
are called producers; readers consumers. In essence, KAP
allows a configurable number of producers to write key-value
objects into our KVS and a configurable number of consumers
to read these objects after ensuring the consistent KVS state.

In addition to producer and/or consumer counts, KAP
provides a range of parameters that can affect performance,
including the value size (of key-value objects), the number
of objects to put, the number of objects to get, objects access
patterns (through different striding), and synchronization prim-
itives used for consistency. KAP consists of four phases: setup,
producer, synchronization and consumer phases. During the
setup phase, tester processes are launched into a set of nodes in
which a CMB session had been established. They are assigned
ranks such that consecutive rank processes are distributed to
consecutive nodes. The rank processes determine their roles
based on the command line arguments (either producer or
consumer) and issue a Flux collective barrier to begin to play
their roles simultaneously.

Next, each producer calls the specified number of
kvs_puts of an object of the specified value size. For each
call, the producers use unique keys, but the values can be
configured to be either unique or redundant. Once this is done,
all of the producers and consumers enter the synchronization
phase in which they participate in a consistency protocol. They
use KVS synchronization primitives such as kvs_fence and
kvs_wait_version. Finally, during the consumer phase,
consumers read these key-value objects by calling kvs_gets.
KAP provides options to emulate various read access patterns.

A. Experimental Setup

We ran all of our experiments on two Linux clusters
installed at Lawrence Livermore National Laboratory (LLNL),
named Zin and Cab. Each compute node of these clusters has



Fig. 2: Max latency of producer phase

2 sockets and 32 GB of RAM. Each socket is populated with
an 8-core 2.6 GHz Intel Xeon E5-2670 processor, resulting in
16 cores per node. Nodes are connected by a Qlogic Infiniband
QDR interconnect. The largest allocation our batch system
allows for our tests is 512 nodes (8,192 cores).

We ran KAP with varying arguments to its parameters in
batch mode and collected performance metrics. Due to the
huge parameter space, however, we limited our experiments to
only a subset of the parameter set.

Specifically, we ran our KAP tests at 64, 128, 256 and 512
compute nodes, and always fully populated each node with 16
processes, each acting as consumer or producer or both. We
varied the consumer or producer count while fixing the other
at the total number of cores. We also tested the value size at
8, 32, 128, 512, 2048, 8192, and 32,768 bytes, and the key-
value object access count of each consumer from 1 to the total
process count.

Further, we evaluated the performance impact of how key-
value objects are organized in KVS by either storing all of
the objects into a single KVS directory or distributing them
into multiple directories of at most 128 objects each. Finally,
we studied the performance implications of redundancy in
values by either configuring producers to generate unique
or redundant values across them. For simplicity, we fixed
the comms session topology as a binary tree and used only
kvs_fence for synchronization.

B. Performance Results and Analysis

Of tens of thousands of our sampling runs, we find that the
fully populated cases—i.e., both producer and consumer counts
become equal to the total process count—are most revealing. In
particular, we carefully analyze the maximum latency of each
of the main phases of KAP for these cases because this metric
represents the critical path of the performance of many HPC
process-management services. For example, distributed HPC
software would use KVS operations in a coordinated fashion
to exchange connection information among processes during
its bootstrapping phase as shown in LIBI [23] and PMI [18].
Unless all of the distributed processes complete their KVS
operations, their communication fabric cannot be established.

Figure 2 shows the maximum latency of the producer
phase. Essentially, these plots indicate how well kvs_put
scales as we increase the number of producers. Each plot
represents different value sizes—e.g., vsize-8 refers to value
size being 8 bytes. As shown in this graph, the kvs_put sim-
ply performs and scales well. This matches our expectations

Fig. 3: Max latency of synchronization phase

because objects are cached in write-back mode at kvs_put
time and flushed to the master at the next consistency event.

Moving on to the synchronization phase, Figure 3 shows
how kvs_fence scales as the number of producers increase.
As with the producer latency, each plot represents different
value sizes under two different value types: unique values
vs. redundant values. The most revealing observation is that
fence scalability depends on the level of redundancy in key-
value objects that had previously been put in. Figure 3 shows
the improvements made when redundant values are used.
Label red-vsize-k is the same maximum latency metric
as vsize-k except that redundant values had been used.

We theorize that in the unique-value case, the fence op-
eration would perform linearly with respect to the number of
producers because these values are simply being concatenated
while being sent up the tree, and that it would perform
logarithmically for the redundant-value case because redundant
values are reduced while being sent up the tree. However,
our data shows that the redundant-value case falls short of
logarithmic scaling, and we find that this is because while
values are reduced, the (key, SHA1) tuples referring to them
are still concatenated.

Next, Figure 4 shows the maximum latency of the con-
sumer phase. These results show how kvs_get scales as
we increase the number of consumers. Each plot represents
the latency when each consumer reads different numbers of
objects, e.g., the access-4 plot represents each consumer
reading 4 distinct objects. While these figures show only the
performance of reading objects 8 bytes in size, we observe that
scalability trends are similar at different value sizes.

Figure 4(a) shows the maximum latency of kvs_get
when the target keys are all stored in a single KVS directory
object. The latency is quite high and also increases linearly
as we increase the number of consumers. It appears that the
poor performance and scaling behavior are attributed to the
fact that our slave caches store only full objects, and the small
objects being consumed in the test cannot be retrieved without
faulting in the entire directory object containing them, through
the tree of CMB slave cache instances.

With our access pattern where G objects are read collec-
tively by C consumers, and the time to replicate G objects
in a single slave cache from its CMB-tree parent is given by
T (G), the maximum consumer latency is given by

log2(C)× T (G). (1)

Thus, the max latency increase for every doubling of con-



(a) With single-directory layout

(b) Improvements with multiple directories

Fig. 4: Max latency of consumer phase (value size: 8 bytes)

sumers is
log2(2C)× T (2G)
log2(C)× T (G)

. (2)

Generally, this would approach 2, as we continue to increase
the number of consumers, and our data match with this model.

We can improve this behavior by storing objects across
multiple directories. Slave caches can then operate at a finer
granularity, and the quantity of data that must be retrieved to
satisfy consumer requests will tend, depending on how requests
stride directories, to be proportional to the quantity of data
requested. This is especially true toward the leaves of the
CMB tree where the slave caches service a decreasing subset
of consumers. Figure 4(b) shows the improvements when
objects are spread into directories of 128 objects each. Label
mdir-acc-k refers to the same access pattern as access-k
except the objects are stored across multiple directories.

When objects are spread across directories and the amount
of data faulted into slave caches decreases as a function of tree
levels, the latency can be modeled as a geometric series. For
example, at tree height h, the latency would be

T (G) + T (
G

2
) + T (

G

4
) + ... + T (

G

2h
), (3)

where each term represents the latency of replication per level,
and the sum approaches 2T (G). Thus, its improvement over
the single directory scheme is on the order of

log2(C)× T (G)
2T (G)

=
1
2
log2(C). (4)

The improvements would be linearly greater as we increase
the scale and our measurements agree with this.

While these results suggest a promising avenue for re-
working the KVS internal object layout for performance, we

note that such a scheme alone would fall short of reaching an
extremely large scale. Our model suggests that the latency will
grow linearly when G grows with the scale. For example, if G
doubles every time the number of consumers is doubled, our
geometric series model predicts the latency will also double
according to

2T (2G)
2T (G)

. (5)

With the current scheme, the only way to gain true logarithmic
scaling is when G stays constant regardless of scale.

VI. RELATED WORK

Flux seeks to change the paradigm in which large HPC
centers should manage, model, schedule, and allocate re-
sources. A strong body of research exists in each of these areas
including production solutions such as SLURM [8], LSF [11],
Moab [9], PBS Pro [10], LoadLeveler [24] and Condor [25].
Flux is distinguished from these approaches, as it provides
a new paradigm that can address emerging resource and job
management challenges with a center-wide purview under one
common software framework.

In other areas, like cloud and grid computing, the need for
exploiting scheduler parallelism including two-level scheduling
recently emerged. Google’s Omega [12] exploits a parallel
scheduler architecture whereby multiple schedulers concur-
rently access the shared resource state with an optimistic
concurrency model. Efforts such as Apache Mesos [13] and
many emerging grid schedulers [26], [27] take advantage of
two-level scheduling strategies. However, these approaches are
neither optimized for HPC workloads nor well suited for large
HPC centers. Scales of large HPC centers like those at national
laboratories demand a deeper and more dynamic levels in the
resource management and scheduler hierarchy with an ability
to impose constraints at various levels in this hierarchy.

HPC trends increasingly motivate scalable KVS imple-
mentations. Wang et al. proposed a distributed KVS as the
basis for HPC services to encapsulate complexity of distributed
services [20]. They further evaluate replacing the centralized
controller in SLURM [8] with a distributed controller [28]
built on ZHT [29]. While existing KVS work takes an incre-
mental approach of improving scalability of a traditional RJMS
paradigm with new scalable services, ours are built specifically
to support the new paradigm. We also evaluated Redis [30]
and twemproxy [31] as part of our early KVS investigation.
However, their design points are not optimized for HPC
workloads which often feature synchrony and coordination.

Finally, much research exists in the area of tree-based
overlay network (TBON). They include MRNet [32] and
COBO [7], and CMB can be considered to be a TBON.
But unlike user-level TBONs, ours must support system-level
activities, and this requires us to address distinct research
topics such as support for multiple user-level networks (which
actually include other user-level overlay networks), security,
low noise and fault tolerance.

VII. CONCLUSION

Large HPC centers are increasingly facing multifaceted
resource and job management challenges that, if not properly



met, will result in significant losses. We present a new manage-
ment paradigm and its incarnation, Flux, that can effectively
address these challenges in a single software framework, while
making site-wide operations more tractable.

We have validated two of the key run-time components
responsible for communication, and our results show that
our run-time infrastructure is most scalable when information
exchange patterns themselves are also scalable, which suggests
two significant directions. For one, we must carefully design
the data exchange patterns among distributed components of
run-time elements including Flux’s own management services.
In particular, to achieve extreme scalability, each component
must avoid accessing a global view. Secondly, we must also
continue to push the scalability envelope of our infrastructure,
in particular in the KVS. We plan to address the latter by
distributing the KVS master itself.

Ultimately, we are designing Flux to enable developers at
the operating system and run-time levels to leverage the RJMS
data stores and services in new and powerful ways, and we
expect that it will position HPC centers to cope with diverse,
massively large-scale resources.
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